101. Oxydative Aryl-Aryl-Verknüpfung von 6,6',7,7'-Tetramethoxy-1,1',2,2',3,3',4,4'-octahydro-1,1'-biisochinolin-Derivaten¹)

von Marc-André Siegfried, Hans Hilpert, Max Rey und André S. Dreiding

Organisch-Chemisches Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich

(10.II1.80)

Oxidative Aryl-Aryl-Coupling of 6,6',7,7'-Tetramethoxy-1,1',2,2',3,3',4,4'-octahydro-1,1'-biisoquinoline Derivatives

Summary

We describe the synthesis of 2 by intramolecular oxidative coupling of 1, l'-biisoquinoline derivatives 1 (Scheme 1). This heterocyclic system can be considered as a union of two apomorphine molecules and may thus exhibit dopaminergic activity. - The readily available tetrahydrobiisoquinoline 6 was methylated to 11 (Scheme 4) and reduced (with NaBH₃CN) to rac-7 and (catalytically) to meso-7 (Scheme 3). Reduction of 11 with NaBH₄ and of the biurethane rac-9 with LiAlH₄/AlCl₃ afforded meso- and rac-10, respectively (Scheme 4). Demethylation of 6, meso-10, meso- and rac-7 led to 12, meso-14, meso- and rac-13, respectively (Scheme 5). The latter two phenols were converted with chloroformic ester to the hexaethoxycarbonyl derivatives *meso*- and *rac*-15 and subsequently saponified to the biurethanes meso- and rac-16, respectively (Scheme 5). - In order to assure proximity of the two aromatic rings, the ethano-bridged derivatives meso- and rac-18 were prepared by condensing meso- and rac-7 with oxalic ester and reducing the oxalyl derivatives meso- and rac-17 with LiAlH₄/AlCl₂, respectively (Scheme 6). The ¹H-NMR, spectra at different temperatures showed that rac-18 populated two conformers but rac-17 only one, all with C_2 -symmetry, and that meso-17 as well as meso-18 populated two enantiomeric conformers with C_1 -symmetry. Whereas both oxalyl derivatives 17 were fairly rigid due to the two amide groupings, the ethano derivatives 18 exhibited coalescence temperatures of -20 and 30°. - The intramolecular coupling of the two aromatic rings was successful under 'non-phenolic oxidative' conditions with the tetramethoxy derivatives 7, 10 and 18, the rac-isomers leading to the desired dibenzophenanthrolines, the meso-isomers, however, mostly to dienones (Scheme 9): With VOF₃ and FSO₃H in CF₃COOH/CH₂Cl₂ rac-7 was converted to rac-19, rac-18 to rac-21 and rac-10 to a mixture of rac-20 and the dienone 23b of the morphinane type. Under the same conditions meso-10 was transformed to the dienone 23a of the morphinane type, whereas meso-18 yielded the dienone 24 of the neospirine type, both in lower yields. The analysis of the spectral data of the six coupling products offers

¹) Aus der Dissertation von *M.-A. Siegfried*, Universität Zürich, 1978.

evidence for their structures. With the demethylation of rac-20 and rac-21 to rac-25 and rac-26, respectively, the synthetic goal of the work was reached, but only in the *rac*-series (*Scheme 10*). – In the course of this work two cleavages of octahydro-1, 1'-biisoquinolines at the C(1), C(1')-bond were observed: 1) The biurethanes 9 and 16 in both the *meso-* and *rac*-series reacted with oxygen in CF₃COOH solution to give the 3,4-dihydroisoquinolinium salts 27 and 28; the latter was deprotonated to the quinomethide 30 (*Scheme 11*). 2) Under the *Clarke-Eschweiler* reductive-methylation conditions *meso-* and *rac-7* were cleaved to the tetrahydroisoquinoline derivative 32.

1. Einleitung. – Im Zusammenhang mit dem Interesse an Strukturtypen, welche Dopamin-Einheiten in spezifischer Konformation (vgl. [1]) enthalten, haben wir uns die Synthese des heterocyclischen Systems 2, dessen Struktur bei $R^1 = CH_3$ und $R^2 = H$ als Vereinigung von zwei Apomorphin-Molekeln betrachtet werden kann, zum Ziel gesetzt. Wir beschreiben hier die Herstellung von 1, 1'-Biisochinolinderivaten 1 und deren intramolekulare oxydative Aryl-Aryl-Verknüpfungen zu 2 (Schema 1) und zu anderen isochinolinalkaloid-ähnlichen Verbindungen. Von besonderem Interesse waren konfigurative und konformative Aspekte.

Als Reaktant verwendeten wir das von *Matsuo et al.* [2] beschriebene Tetramethoxy-tetrahydrobiisochinolin 6, welches aux Oxalsäure-diäthylester (3) und Homoveratrylamin (4) mit anschliessender *Bischler-Napieralski*-Kondensation des Biamids 5 zugänglich ist (*Schema 2*).

2. Reduktion des Tetrahydrobiisochinolins 6. – Für die Reduktion der Iminfunktionen in 6 fanden wir zwei stereoselektive Methoden, von denen die eine zum *meso*- und die andere zum *rac*-Octahydrobiisochinolin 7 führte (Schema 3). So isolierten wir aus der Reduktion von 6 mit Natriumcyanoborhydrid in saurem Medium 74% *rac*-7. Andererseits gab die Hydrierung des Monohydrochlorids von 6 in äthanolischer Lösung über Platinoxid bei *ca.* 3,5 bar 80% *meso*-7. In beiden Fällen war das andere Stereoisomere im rohen Reaktionsgemisch nicht zu beobachten. Weniger selektiv verlief die gleiche Hydrierung in überschüssiger Salzsäure, wo in 80% Ausbeute ein (7:2)-Gemisch der beiden Diastereoisomeren *meso*- und *rac*-7 entstand.

Da die einander sehr ähnlichen Spektraleigenschaften von meso- und rac-7 keinerlei Hinweise auf ihre Konfigurationen ergeben, wurden die beiden Diamine 7 in die schon von Schmid et al. [3] beschriebenen Aminale meso- und rac-8 überführt. Das Aminal meso-8 zeichnet sich durch die Diastereotopie, rac-8 jedoch durch die Homotopie der geminalen H-Atome am Aminal-C-Atom aus. Es ergibt sich jetzt, dass das von Matsuo et al. [2] aus der Hydrierung von 6 mit Platinoxid isolierte Diamin 7 die meso-Konfiguration besitzt. Die vorliegenden Resultate erlauben noch keine überzeugende Erklärung für die umgekehrte und dennoch so hohe Stereoselektivität der beiden Reduktionsmethoden.

3. Herstellung N, N'-disubstituierter Octahydrobiisochinoline. – Reaktion von *meso-* und *rac-7* mit Chlorameisensäure-äthylester ergab (90%) die Biurethane *meso-* bzw. *rac-9* (Schema 4). Wegen Rotationsisomerie um die N-CO Bindungen sind ihre jeweilige ¹H-NMR.-Spektren in CDCl₃-Lösung kompliziert; in CF₃COOH-Lösung (unter Ausschluss von Sauerstoff, vgl. Kap. 8) vereinfachen sie sich jedoch und zeigen die der C_s - bzw. C_2 -Symmetrie entsprechenden Zweiprotonensingulette für H-C(5)/H-C(5'), H-C(8)/H-C(8') und H-C(1)/H-C(1') sowie die zwei Sechsprotonensingulette für die Methoxygruppen.

Reduktion des Biurethans rac-9 mit $LiAlH_4/AlCl_3$ lieferte das N, N'-Dimethylderivat rac-10 (83%). Das entsprechende meso-10 war durch Quartärisierung von 6 mit p-Toluolsulfonsäure-methylester zum Biisochinoliniumsalz 11 (100%) und anschliessende NaBH₄-Reduktion zugänglich (70%). Bemerkenswert ist die Umkehr der Stereoselektivität bei der Reduktion von 11 zu meso-10 mit NaBH₄ im Vergleich zu derjenigen von 6 zu rac-7 mit NaBH₃CN.

Die Clarke-Eschweiler-Methode war für für N-Methylierung von meso- oder rac-7 ungeeignet, da unter diesen Bedingungen auch noch eine Fragmentierung stattfand (s. Kap. 8). Bei der reduktiven Methylierung mit Formaldehyd/NaBH₃CN entstand aus meso-7 das N, N'-Dimethylderivat meso-10 (95%), aus rac-7 jedoch nur eine Verbindung X (50%), deren Struktur noch ungeklärt ist (s. exper. Teil).

4. Herstellung der Tetraphenole. – Demethylierung der Tetramethoxybiisochinoline 6, meso-7, rac-7 und meso-10 mit 48proz. Bromwasserstoffsäure lieferte die entsprechenden Tetraphenole 12, meso-13, rac-13 bzw. meso-14 als Dihydrobromide in guter Ausbeute (Schema 5). Trotzdem diese Salze z. T. nicht analysenrein erhalten wurden, können ihre Strukturen aufgrund der ¹H-NMR.-Spektren als gesichert gelten.

Bei der Acylierung der Tetraphenole *meso-* und *rac-13* mit überschüssigem Chlorameisensäure-Äthylester entstanden die Hexaäthoxycarbonylderivativate *meso-* bzw. *rac-15.* Auch diese Urethane zeigen bei Raumtemperatur komplexe ¹H-NMR.-Spektren, deren Signale sich jedoch bei 120° zu den für symmetrisch substituierte Octahydrobiisochinoline typischen Mustern vereinfachen. Milde alkalische Verseifung von *meso-* und *rac-***15** ergab die Tetrahydroxybiurethane *meso-* bzw. *rac-***16**, bei denen sich die behinderte Amid-Rotation wiederum in der Komplexität der ¹H-NMR.-Spektren äusserte.

5. Herstellung N, N'-überbrückten Octahydrobiisochinoline. – Kondensation der Octahydrobiisochinoline *meso-* und *rac-7* mit Oxalsäure-diäthylester lieferte die Oxalylderivativate *meso-* bzw. *rac-17*, welche sich mit LiAlH₄/AlCl₃ in die Äthanoderivate *meso-* bzw. *rac-18* überführen liessen.

Um die ¹H-NMR.-Spektren dieser überbrückten Octahydrobiisochinoline zur Strukturbestätigung heranziehen zu können, müssen wir zuerst die konformativen Aspekte dieser Substanzklasse besprechen: Die rac-Isomeren von 17 und von 18 können aus zwei an C(1), C(1') gestaffelten Konformeren bestehen, welche wir entsprechend dem Torsionswinkel von H-C(1)/H-C(1') als antiperiplanare (ap) bzw. synclinale (sc) Konformere bezeichnen (Schema 7). Beide haben C_2 -Symmetrie,

so dass es von jedem noch ein Enantiomeres gibt. Die *meso*-Isomeren von 17 und von 18 existieren als zwei enantiomere Konformere, die wir entsprechend der Helizität des (N-C-C-N)-Torsionswinkels das (M)- und das (P)-Konformere nennen (Schema 8). Beide haben C_1 -Symmetrie. Nicht enthalten in dieser Analyse sind die Ringe B, B' und C, welche entweder flexibel in mehreren oder dann starr in nur einer Konformation vorliegen (s. auch weiter unten).

17 X = CO**18** $X = CH_2$

Im rac-ap-Konformeren sind die beiden aromatischen Ringe A und A' nahe beieinander und parallel gestaffelt angeordnet (s. Fig. 1). Dadurch wird jedes der beiden «inneren» aromatischen Protonen (H-C(8) bzw. H-C(8')) in den Entschirmungsbereich des jeweils anderen aromatischen Ringes (A' bzw. A) gebracht. Im rac-sc-Konformeren ist dieser Effekt wegen grösserer Entfernung der aromatischen Ringe nicht vorhanden. In den beiden meso-Konformeren (M) und (P) kommt nur eines der zwei «inneren» aromatischen Protonen (H-C(8) oder H-C(8')) in den Entschirmungsbereich des anderen aromatischen Ringes (A' oder A) zu liegen (s. Fig. 2).

Fig. 1. ap-Konformation von rac-17 (X=CO)bzw. rac-18 $(X=CH_2)$

Fig.2. (P)-Konformation von meso-17 (X = CO) bzw. meso-18 (X = CH_2)

Wir besprechen zuerst die ¹H-NMR.-Spektren der Isomeren von 18, da diese wegen der Flexibilität der Äthanobrücke (Drehbarkeit der (C-C)- und (C-N)-Bindungen sowie Umklappbarkeit um das N-Atom) beweglicher sind, so dass die erwähnten Konformeren alle auftreten. Bei tiefen Temperaturen sind die Torsionsbewegungen für die getrennte Beobachtung der Konformeren genügend langsam; erhöhte Temperaturen ergeben einen dynamischen Durchschnitt. Von beiden Isomeren 18 wurden 100-MHz-Spektren gemessen. Die Signale der zwölf Methylenprotonen erscheinen jeweils als ein Multiplett. Im Spektrum von rac-18 (in CDCl₃) bei -60° lassen sich zwei Konformere A und B im Verhältnis von 5:4 erkennen. Jedes der beiden Konformeren gibt Anlass zu drei separaten Singuletten, zwei für aromatische und eines für Methinprotonen (die Signale der Methoxygruppen fallen teilweise zusammen). Dies entspricht einer C_2 -Symmetrie von A und von B. Dem Konformeren A wird die ap-Struktur zugeordnet, da das Signal seiner «inneren» Protonen um mehr als 1 ppm bei höherem Feld erscheint als diejenigen der anderen aromatischen Protonen von A und B. Das Konformere B hat somit die (sc)-Struktur. Das Spektrum von rac-18 (in CDCl₃) bei 29° zeigt fünf getrennte Singulette, zwei für aromatische Protonen, eines für Methinprotonen und zwei für Methoxygruppen, was dem beweglichen Durchschnitt des ap- und sc-Konformeren mit C2-Symmetrie von rac-18 entspricht. Nach der chemischen Verschiebung der «inneren» aromatischen Protonen zu urteilen, muss bei 29° ein wesentlich grösserer Anteil des *ap*-Konformeren vorhanden sein, als bei -60° . Die Koaleszenztemperatur der $ap \rightleftharpoons sc$ Umwandlung liegt bei -20° .

Das Spektrum von meso-18 (in CDCl₃) bei -20° zeigt zehn getrennte Signale, vier Singulette für aromatische Protonen, vier Singulette für Methoxygruppen und zwei nicht gut definierte Signale für Methinprotonen (H-C(1)/H-C(1')). Dies entspricht der C₁-Symmetrie des (M)- und des (P)-Konformeren. Im Spektrum von meso-18 (in C₆H₅NO₂) bei 150° sind nur zwei Singulette für aromatische Protonen, ein breites Singulett für Methinprotonen und zwei Singulette für Methoxygruppen sichtbar. Dies entspricht der C₃-Symmetrie eines beweglichen Durchschnittes des (M)- und (P)-Konformeren von meso-18. Die Koaleszenztemperatur der (M) \rightleftharpoons (P) Umwandlung liegt bei etwa 30°.

Wegen der zweifachen Amidgruppierung der Oxalylbrücke sind die Isomeren von 17 weniger beweglich. Dies äussert sich darin, dass rac-17 nur als ap-Konformeres vorliegt und dass bei meso-17 die $(M) \neq (P)$ Umwandlung viel langsamer ist als bei meso-18. Von beiden Isomeren 17 waren 360-MHz-Spektren mit entsprechend differenzierter Information erhältlich. Das Spektrum von rac-17 (in CDCl₃) bei Raumtemperatur zeigt neun Signale, eines für jede Klasse von nicht-äquivalenten Protonen von nur einem Konformeren mit C_2 -Symmetrie. Dass es sich um das ap-Konformere handelt, zeigt das Signal der «inneren» aromatischen Protonen, welches - im Vergleich zu demjenigen der «äusseren» - um 1,3 ppm nach höherem Feld verschoben ist.

Im Spektrum von *meso*-17 (in CDCl₃) bei Raumtemperatur sind achtzehn getrennte Signale sichtbar, so dass es sich um die enantiomeren Konformeren (M) und (P) mit C_1 -Symmetrie handeln muss, wo achtzehn Klassen von nicht-äquivalenten Protonen auftreten. Wie erwartet, ist hier das Signal von nur einem der aromatischen Protonen nach höherem Feld verschoben. Die Kopplung der beiden Methinprotonen H-C(1) und H-C(1') ist hier beobachtbar; ihre Grösse von 4 Hz bestätigt die synclinale Anordnung der beiden Protonen wie sie für das (M)- (bzw. (P))-Konformere erwartet wird.

Die gut aufgelösten Spektren von *rac*- und *meso*-17 zeigen dass die Tetrahydropyridinringe (Ringe B und B') stark bevorzugt in einer Konformation vorkommen, denn je ein Proton an C(3) und C(3'), nämlich das äquatoriale, liegt stark im Abschirmungsbereich der benachbarten Carbonylgruppe und ist gegenüber dem axialen Proton um etwa 2 ppm nach tieferem Feld verschoben. Die Spektren von *rac*- und *meso*-17 ändern sich im Temperaturbereich von 30 bis 90° nicht.

6. Oxydative (Aryl-Aryl)-Verknüpfung. – Orientierende Versuche, die Tetraphenole meso-13, rac-13 und meso-14 mit Eisen (III)chlorid nach [4] sowie die Tetrahydroxybiurethane meso- und rac-16 mit Kaliumhexacyanoferrat (III) (vgl. [5]) intramolekular zu verknüpfen, ergaben keine vielversprechenden Resultate. Erfolgreicher verlief die Oxydation der Tetramethoxyderivate mit VOF₃ in CF₃COOH/ CH₂Cl₂ in Gegenwart von FSO₃H: Aus rac-7 und rac-18 entstanden die Dibenzophenanthroline rac-19 bzw. rac-21, aus rac-10 das Dibenzophenanthrolin rac-20

Reaktant	Reaktionsbedingungen		Produkte		
	Molverhältnis VOF ₃ : Reaktant	Dauer (Std.)/ Temp. (°)			
R = H					
meso-7	2	1,5/-25	-	-	- ^a)
	7	1,5/-25		-	- a)
rac-7	2	3,0/-25	rac-19 66%	-	-
	7	2,0/-25	-	-	- ^a)
$R = CH_3$					
meso-10	2	1,5/-25	-	-	- ^a)
	7	1,5/-25	-	23 a 18%	-
rac-10	2	1,5/-25	rac-20 48%	23b 32%	- ^b)
	7	1,5/-25	rac-20 16%	23b 24%	-
$RR = CH_2CH_2$					
meso- 18	2	23/+25	-	_	24 18%°)
	7	1,5/+25	-	-	- ^a) ^d)
rac-18	2	1,5/-25	rac- 21 72%	_	_
	7	1,5/-25	rac- 21 34%	-	-

Tabelle. Oxydation der Tetramethoxyoctahydrobiisochinoline mit Vanadiumoxytrifluorid (s. Schema 6)

a) Komplexes Gemisch, kein einheitliches Produkt isolierbar.

b) Zurückgewonnener Reaktant: 8%.

c) Zurückgewonnener Reaktant: 43%.

d) Zurückgewonnener Reaktant: 4%.

und das Dienon vom Morphinantyp²) 23b, aus meso-10 das Dienon vom Morphinantyp 23a, aus meso-18 das Dienon vom Neospirintyp²) 24 und aus meso-7 nur ein komplexes Gemisch (Schema 9). Bedingungen und Ausbeuten dieser Reaktionen sind in der Tabelle zusammengefasst, die Strukturen der Verknüpfungsprodukte werden in Kap. 7 behandelt. Ein Vergleich der Resultate zeigt, dass die Verknüpfungen in der rac-Reihe leichter stattfinden (mildere Bedingungen, grössere Gesamtausbeuten) als in der meso-Reihe, dass die Verwendung eines grossen Überschusses von Oxydationsmittel im allgemeinen nicht von Vorteil ist und dass aus den rac-Isomeren vorwiegend Dibenzophenanthroline, aus den meso-Isomeren jedoch vorwiegend Dienone entstehen.

In Analogie zu oxydativen intramolekularen (Aryl-Aryl)-Verknüpfungen bei Benzylisochinolinderivaten (s. z. B. [6]) ziehen wir für *meso-* und *rac-7*, -10 und -18 drei Verknüpfungsarten in Betracht, nämlich zwischen C(8') und C(8) $(\rightarrow I)$,

²) Die Bezeichnung Morphinantyp und Neospirintyp für die Konstitutionen 23 bzw. 24 wurde in Anlehnung an die in der Isochinolinalkaloidreihe gebräuchlichen Trivialnamen verwandter Verbindungen gewählt (die Numerierungen beziehen sich auf die im exper. Teil verwendeten Namen). Im Falle von 19-21 wird auf eine Bezeichnung in Analogie zu den Aporphinalkaloiden verzichtet, da eine das Gerüst ausdrückende Kurzbezeichnung (Dibenzophenanthrolin(=1,12-Diazaperylen)) zur Verfügung steht.

zwischen C(8') und C(8a) (\rightarrow II) und zwischen C(8') und C(4a) (\rightarrow III; vgl. Schema 9). Durch 1,2-Verschiebungen können sich die Zwischenprodukte I-III ineinander und auch in IV umwandeln. Deprotonierung von I führt zu den Dibenzophenanthrolinen *rac-*19, -20 und -21, und Demethylierung von III und IV zu den Morphinan-Dienonen 23a und 23b bzw. zum Neospirin-Dienon 24. Wegen der Vielfalt der möglichen Reaktionswege ist eine Erklärung für das unterschiedliche Verknüpfungsverhalten in der *meso-* und *rac*-Reihe aufgrund unserer Resultate noch nicht möglich. Nach Arbeiten von *Kupchan et al.* [7] mit Benzylisochinolinderivaten wäre in Betracht zu ziehen, dass bei der Bildung aller unserer Produkte primär das Zwischenprodukt III durchlaufen wird, wonach 19-21 via II und I, 23 direkt und 24 via IV entstehen. Da im Falle von *rac-*18 das Zwischenprodukt III (R= $-CH_2CH_2-$) äusserst gespannt wäre, erscheint uns - zumindest bei der Bildung von 21 – eine direkte Verknüpfung zu I wahrscheinlicher.

Demethylierung der Tetramethoxydibenzophenanthroline *rac*-20 und *rac*-21 mit 48proz. Bromwasserstoffsäure lieferte die entsprechenden Tetraphenole *rac*-25 und *rac*-26 in Form ihrer Dihydrobromide (*Schema 8*). Damit war das synthetische Ziel dieser Arbeit erreicht, allerdings nur in der *rac*-Serie.

Schema 10

HC

нC

7. Spektraleigenschaften der Verknüpfungsprodukte. – Die Dibenzophenanthroline rac-19, rac-20 und rac-21 weisen UV.-Absorptionen im Bereich von 300 nm und 270 nm auf, wie sie auch bei entsprechend methoxysubstituierten Aporphinen zu finden sind [8], und zeigen ihrer C_2 -Symmetrie entsprechend einfache ¹H-NMR.-Spektren.

25

26

 $R = CH_3 (rac)$ $RR = CH_2CH_2 (rac)$

Die zwei epimeren Dienone vom Morphinantyp²) **23a** und **23b** zeichnen sich durch sehr ähnliche Spektraleigenschaften aus, wovon die wichtigsten in *Figur 3* zusammengefasst sind. Die UV.-, IR.- und gewisse NMR.-Daten entsprechen denjenigen von ähnlich substituierten Morphinan-Dienonen [9]. Die beiden Isomeren **23a** bzw. **23b** unterscheiden sich im wesentlichen nur in den ¹H-NMR.-Signalen der Methinprotonen H-C(1) und H-C(2), insbesondere in deren Kopplungskonstanten, J=5 bei **23a** bzw. J < 1 bei **23b**, welche mit den an Modellen abgelesenen Torsionswinkeln (H-C(1)-C(2)-H) von ca. 30 bzw. ca. 90° übereinstimmen. Die relative Konfiguration an C(1) und C(2) entspricht derjenigen des jeweiligen Reaktanten und die Konfiguration an C(1) entgegengesetzten Seite des Ringsystems **10** angegriffen werden kann. Eine mögliche Alternative zur Konstitution **23**, nämlich **22**, lässt sich für das aus rac-10 entstandene Produkt aufgrund des Fehlens einer gegenseitigen ¹H-NMR.-Kopplung der beiden Methinprotonen ausschliessen, denn bei **22** aus rac-**10** würden diese Protonen nahezu antiperiplanar stehen und damit eine grosse Kopplung zeigen. Wegen der erwähnten Ähnlichkeit der Spektraldaten wird auch für das aus meso-**10** entstandene Produkt die Konstitution **23**, angenommen.

Einige Spektraleigenschaften des Dienons vom Neospirintyp²) 24 sind in Figur 4 dargestellt. Hervorzuheben ist der Unterschied seines UV.-Spektrums zu denjenigen der Dienone 23a und 23b: Die langwellige Absorptionsbande (317 nm) bei 24 deutet auf eine zusätzliche Konjugation (Aromat mit Dienonring) hin. Allerdings absorbieren ähnlich substituierte Neospirin-Dienone bei etwa 350 nm [10]; die demgegenüber hypsochrome Verschiebung bei 24 könnte durch die am relativ starren Modell sichtbare Verdrillung der beiden ungesättigten Ringe verursacht sein. Die IR.- und die NMR.-Spektren sind mit Struktur 24 in Einklang. Insbesondere weist C(17) im ¹³C-NMR.-Spektrum drei ³J_{C,H}-Kopplungen von 6 Hz auf, was die – nur in 24 vorhandene – vicinale Nachbarschaft von drei Protonen (2 H–C(2) und H–C(18)) zu diesem C-Atom bestätigt.

UV. (C₂H₅OH): Max. 280 (7100), Max. 237 (21600) nm. IR. (CHCl₃): 1670, 1645, 1620 cm⁻¹.

UV. (C₂H₅OH): Sch. 275 (6200), Max. 237 (21600) nm. IR. (CHCl₃): 1670, 1645, 1620 cm⁻¹.

Fig.3. Zuordnung einiger charakteristischer ¹H-NMR.- (400 MHz) und ¹³C-NMR.-Signale (25,2 MHz) der Dienone vom Morphinantyp²) 23a und 23b in CDCl₃, zusammen mit UV.- und IR.-Daten

UV. (EtOH): Sch. 317 (6250), Max. 285 (12340) nm. IR. (CHCl₃): 1660, 1640, 1610 cm⁻¹.

Fig.4. Zuordnung einiger charakteristischer ¹H-NMR.- (400 MHz) und ¹³C-NMR.-Signale (25,2 MHz) des Dienons vom Neospirintyp²) 24 in CDCl₃ oder C_6D_6 (mit * bezeichnet), zusammen mit UV.- und IR.-Daten

8. C(1), C(1')-Bindungsspaltung bei Octahydrobiisochinolinen. – Die Biurethane *meso*- und *rac*-9 sowie *meso*- und *rac*-16 wurden bei Raumtemperatur in Trifluoressigsäurelösung unter Lufteinwirkung innerhalb weniger Stunden, bei Einleiten von Sauerstoff innerhalb weniger Minuten, quantitativ in die N-Äthoxycarbonyl-dimethoxy- bzw. -dihydroxy-3,4-dihydroisochinolinium-trifluoracetate 27 bzw. 28 umgewandelt (Schema 11). Die ¹H-NMR.-Spektren der nur in Trifluoressigsäurelösung beobachteten Salze 27 und 28 weisen das für H-C(1) charakteristische Tieffeld-Singulett bei 9,53 bzw. 9,37 ppm auf.

Katalytische Hydrierung einer Trifluoressigsäurelösung von 27 lieferte das Tetrahydroisochinolinderivat 29, welches auch aus 6,7-Dimethoxy-1,2,3,4-tetrahydroisochinolin [11] mit Chlorameisensäure-äthylester erhalten wurde. Das Salz 28 wurde durch Behandlung mit Natriumhydrogencarbonat in die freie Base 30 übergeführt, die im UV.-Spektrum ein ausgeprägtes Maximum bei 403 nm ($\varepsilon = 22200$) und im IR.-Spektrum eine starke Bande bei 1590 cm⁻¹ aufweist. Reduktion von 30 mit Natriumcyanoborhydrid lieferte das Tetrahydroisochinolin-Derivat 31.

Eine C(1), C(1')-Bindungsspaltung fand auch unter reduktiven Bedingungen statt. Beim Versuch einer *Clarke-Eschweiler*-Methylierung entstand sowohl aus *meso*- wie auch aus *rac*-7 das *N*-Methyl-6, 7-dimethoxy-1, 2, 3, 4-tetrahydroisochino-lin (32). Es ist noch ungewiss, wie diese Bindungsspaltungen mechanistisch zu

deuten sind. In der Literatur wurden C(1), C(1')-Bindungsspaltungen von anderen Biisochinolin-Derivaten unter oxydativen [12] (z. T. mit Chemilumineszenz [13]) und unter thermischen [3] Bedingungen beschrieben. Diese Arbeit wurde vom Schweizerischen Nationalfonds zur Förderung der wissenschaftlichen Forschung unterstützt. Wir danken der Firma Sandoz AG, Basel, für grosszügige Forschungsbeiträge und der Firma Spectrospin für die Hochfeld-¹H-NMR.-Spektren.

Experimenteller Teil

Allgemeines. Vgl. [14] [15] mit folgenden Abänderungen und Ergänzungen. Für die analytische Dünnschichtchromatographie (DC.) wurden DC.-Fertigplatten Kieselgel 60 F_{254} von Merck, 5 × 20 cm, Schichtdicke 0,25 mm, oder Fertigfolien, beschichtet mit Aluminiumoxid Polygram Alox N/UV 254, 5×20 cm, Schichtdicke 0,2 mm, verwendet. Sichtbarmachen unter der UV.-Lampe ($\lambda = 254$ nm) oder durch Besprühen mit wässeriger Kaliumjodoplatinatlösung (5 ml 5proz. H₂PtCl₆-Lösung und 45 ml 10proz. KI-Lösung in H₂O verdünnt mit 100 ml H₂O). - ¹H-NMR.-Spektren (Varian EM 360, HA 100; Bruker HX-360 und WH-400): Angabe der chemischen Verschiebung in ppm gegenüber Tetramethylsilan als internem Standard (=0 ppm); s = Singulett, d = Dublett, t = Triplett, qa = Quadruplett, m = Multiplett, br. = breit; Kopplungskonstanten J in Hz. Bei entkoppelten ¹H-NMR. sind die Einstrahlungsfrequenzen und nur die in ihrer Multiplizität veränderten Signale aufgeführt. -¹³C-NMR.-Spektren (Varian XL-100): s. ¹H-NMR.; Angabe der Multiplizität falls aus «off-resonance»-Spektren bekannt, Kopplungskonstanten $J_{H,C}$ in Hz., bzw. falls aus unentkoppelten Spektren bekannt; Interpretation dort, we möglich. Bei selektiv entkoppelten 13 C-NMR. sind die Restkopplungen mit J_r bezeichnet. - Massenspektren (CEC Spektrometer Typ 21-100b oder Varian MAT 711): Angabe der Massenzahl des Ions m/z (Intensität in % des Basispiks); erwähnt sind nur Fragment-Ionen mit einer Intensität > 10% sowie die Molekularionen und schwächere Pike, sofern sie signifikant sind. - Die Smp. wurden auf einem Mettler-Schmelzpunkttisch (FP. 52) mit Mikroskop bestimmt und sind korrigiert. Von bekannten Verbindungen sind, ausser den für den Reinheitsbeleg benötigten, nur die bisher unbekannten Eigenschaften beschrieben. Die Elementaranalysen und IR.-Spektren stammen aus unserem Mikrolaboratorium (Leitung H. Frohofer). Die 100-MHz-1H-NMR.- und die 13C-NMR.spektren wurden im Kernresonanz-Laboratorium unseres Institutes (Leitung Prof. W. v. Philipsborn), die 360-MHz- und 400-MHz-¹H-NMR.-Spektren bei der Firma Spektrospin in Fällanden aufgenommen. Die MS. wurden im Laboratorium für Massenspektroskopie unseres Institutes (Leitung Prof. M. Hesse) aufgenommen.

Herstellung von N, N'-*Bis*[2-(3', 4'-dimethoxyphenyl)äthyl]oxamid (5). – Nach [2] (etwas modifiziert) wurde die Lösungen von 43,8 g (0,3 mol) Oxalsäure-diäthylester (3) in 100 ml Toluol im Verlauf von ca. 10 Min. zu einer gerührten Lösung von 120 g (0,66 mol) Homoveratrylamin (4) in 500 ml Toluol getropft. Der entstandene Brei wurde 2,5 Std. unter Rückfluss erhitzt, abgekühlt, das ausgefällte weisse 5 abfiltriert und getrocknet: 114,5 g (92%), Smp. 173–174° ([2]: 173–175°). Nach Einengen des Filtrates kristallisierten weitere 7,4 g (6%) 5, Smp. 167–168°. – IR. (KBr): 3300s, 2970w, 2940w, 2840w, 1655s, 1515s. – ¹H-NMR. (60 MHz, CF₃COOH): 8,58/t (J=6, 2 H, 2 H–N); 7,00/s (6 H, arom.); 4,00/s (12 H, 4 CH₃O); 4,0–3,4/m (teilweise verdeckt, 4 H, 2 CH₂N); 2,97/t (J=7, 4 H, 2 CH₂Ar).

Herstellung von 6, 6', 7, 7'-Tetramethoxy-3, 3', 4, 4'-tetrahydro-1, 1'-biisochinolin (6). Hergestellt nach [2]: Zu einer Lösung von 109 g (0,26 mol) 5 in 700 ml C₂H₅OH/Cl₂CHCHCl₂ 3:11 wurden unter Rühren im Verlauf von 15 Min. 226 ml (2,2 mol) POCl₃ getropft, wobei die Temp. auf 60° anstieg. Die Lösung wurde 1,5 Std. bei 120-130° gehalten; nach 45 Min. bildete sich eine braun-rote, zähflüssige Masse. Das abgekühlte Gemisch wurde unter Rühren mit 550 ml Petroläther (30-60°) versetzt und über Nacht stehen gelassen. Nach Abfiltrieren und Waschen wurde der Festkörper in 1700 ml H₂O und 50 ml CH₃OH aufgenommen, die Lösung mit *ca.* 350 g K₂CO₃ auf pH=10 gebracht, 6mal mit je 800 ml CHCl₃ extrahiert und die vereinigte CHCl₃-Phase nach Trocknen über Na₂SO₄ und Behandeln mit Aktivkohle eingedampft. Umkristallisation des Rückstandes aus 1,5 1 C₂H₅OH in Gegenwart von Aktivkohle ergab in 2 Ernten 59,6 g (60%) 6 als schwachgelbe Nadeln, Smp. 198-202° ([2]: 196-197°). – IR. (KBr): 2930s, 1605s, 1570s, 1515s, 1465s. – ¹H-NMR. (60 MHz, CDCl₃): 6,98/s (2 H, arom.); 6,81/s (2 H, arom.); 3,93/s (6 H, 2 CH₃O); 3,73/s (6 H, 2 CH₃O); 4,2-3,5/m (teilw. verdeckt, 4 H, 2 H-C(3) und 2 H-C(3')); 2,81/t (J=8, 4 H, 2 H-C(4) und 2 H-C(4')). – MS. (70 eV): 380 (15, M⁺), 379 (11), 365 (14, M⁺-CH₃), 363 (33), 350 (30, M⁺-2 CH₃), 349 (100), 348 (15), 347 (30). Herstellung von meso-6, 6', 7, 7'-Tetramethoxy-1, 1', 2, 2', 3, 3', 4, 4'-octahydro-1, 1'-biisochinolin (meso-7). Ein Gemisch von 11,4 g (30 mmol) 6, 7,5 ml 4N HCl (=1 Mol-Äquiv.), 240 mg PtO₂ und 260 ml C_2H_3OH wurde 4 Std. bei ca. 3,5 bar Wasserstoff bei RT. im Parr-Apparat geschüttelt. Die Lösung wurde mit Aktivkohle behandelt, über Celite abfiltriert und eingedampft: 12,4 g rohes, gemäss ¹H-NMR. zu über 90% reines meso-7 HCl. Umkristallisation aus C₂H₅OH lieferte farblose Plättchen, Smp. 207-211° (Zers.). – ¹H-NMR. (60 MHz, CDCl₃): 6,95/br. s (3 H, 3 HN, austauschbar mit D₂O); 6,60/s (2 H, arom.); 6,46/s (2 H, arom.); 5,05/s (2 H, H-C(1) und H-C(1')); 3,82/s (6 H, 2 CH₃O); 3,55/s (6 H, 2 CH₃O); 3,2-2,5/m (8 H, 2 H-C(3), 2 H-C(3'), 2 H-C(4) und 2 H-C(4')).

 $\begin{array}{cccc} C_{22}H_{29}CIN_2O_4 & \text{Ber. C} 62,77 & \text{H} 6,94 & \text{Cl} 8,42 & \text{N} 6,65\% \\ (419,93) & \text{Gef. }, 62,66 & 6,97 & 8,50 & 6,61\% \end{array}$

Zur Freisetzung der Base wurde eine Suspension von 12,4 g (29,5 mmol) rohem *meso*-7·HCl in 180 ml H₂O mit 180 ml CH₂Cl₂ unterschichtet und mit 10proz. NaOH-Lösung unter Rühren auf pH 10-11 gebracht. Nach Abtrennung der CH₂Cl₂-Phase wurde die H₂O-Phase 3mal mit CH₂Cl₂ extrahiert. Die vereinigten CH₂Cl₂-Phasen wurden über Na₂SO₄ getrocknet und eingedampft, der Rückstand mit 20 ml C₂H₅OH angerieben, abfiltriert und getrocknet: 9,5 g (83% bzgl. 6) *meso*-7 als weisses Pulver, Smp. 156-163°. Umkristallisation aus C₂H₅OH ergab farblose Nadeln, Smp. 169-173° ([2]: 169-171°). – IR. (CHCl₃): 3290w, 2940s, 1515s, 1468s, 1118s, 1108s. – ¹H-NMR. (100 MHz, CDCl₃): 6,56/s (2 H, arom.); 6,44/s (2 H, arom.); 4,55/s (2 H, H-C(1) und H-C(1')); 3,84/s (6 H, 2 CH₃O); 3,58/s (6 H, 2 CH₃O); 3,3-2,4/m (8 H, 2 H-C(3), 2 H-C(3'), 2 H-C(4) und 2 H-C(4')); 1,86/s (2 HN, austauschbar mit D₂O). – MS. (70 eV): 192 (50, $M^+/2$), 191 (100), 190 (38), 189 (37), 177 (13), 176 (86), 174 (13), 165 (13), 147 (15), 133 (15).

C22H28N2O4 (384,48) Ber. C 68,72 H 7,34 N 7,28% Gef. C 68,97 H 7,38 N 7,60%

Eine analoge Hydrierung, jedoch in Gegenwart von 3 Mol-Äquiv. HCl, lieferte ein (7:2)-Gemisch von *meso*- und *rac*-7 · 2 HCl in 67% Ausbeute. Die Abschätzung des Diastereoisomerenverhältnisses erfolgte anhand des ¹H-NMR. der aus dem Gemisch freigesetzten Basen. Aus dem Gemisch der Dihydrochloride liess sich durch fraktionierte Kristallisation aus Äthanol *meso*-7 · 2 HCl als farblose Nadeln, Smp. 210-232° (Zers.), abtrennen. – ¹H-NMR. (60 MHz, CF₃COOH): 9,7-9,2/br. s (2 H, 2 HN); 8,6-7,7/br. s (2 H, 2 HN); 7,00/s (2 H, arom.); 6,86/s (2 H, arom.); 6,3-5,8/br. s (2 H, H-C(1) und H-C(1')); 4,00/s (6 H, 2 CH₃O); 3,80/s (6 H, 2 CH₃O); 4,2-2,6/m (teilw. verdeckt, 8 H, 2 H-C(3), 2 H-C(3'), 2 H-C(4) und 2 H-C(4')).

 $\begin{array}{cccc} C_{22}H_{30}Cl_2N_2O_4 & \text{Ber. C } 57,77 & H \ 6,61 & Cl \ 15,50 & N \ 6,12\% \\ (457,40) & \text{Gef. }, \ 57,76 & , \ 7,02 & , \ 15,23 & , \ 5,91\% \end{array}$

Herstellung von rac-7. Eine (braun-rote) Lösung von 20,0 g (53 mmol) 6 in 250 ml 3proz. methanolischer HCl-Lösung wurde i.V. eingedampft. Das so erhaltene Dihydrochlorid von 6 wurde in 200 ml CH₃OH gelöst und im Verlauf von ca. 1 Std. bei RT. zu einer Lösung von 8,0 g 90proz. Natriumcyanoborhydrid (ca. 114 mmol) in 200 ml CH₃OH und ca. 6 ml 3proz. methanolischer HCl-Lösung getropft (pH 4-5). Danach wurde mit 3proz. methanolischer HCl-Lösung auf pH 3 angesäuert, 30 Min. bei RT. weitergerührt, der weisse Festkörper abfiltriert, mit CH₃OH gewaschen und getrocknet: 20,4 g (85%) rohes rac-7 · 2 HCl als weisses Pulver, Smp. 190-192° (Zers.). - ¹H-NMR. (60 MHz, CF₃COOH): 9,7-8,9/br. s (2 H, 2 HN); 7,8-6,7/br. s (teilw. verdeckt, 2 H, 2 HN); 7,12/s (2 H, arom.); 6,97/s (2 H, arom.); 6,2-5,8/br. s (2 H, H-C(1) und H-C(1')); 4,3-2,7/m (teilw. verdeckt, 8 H, 2 H-C(3), 2 H-C(3'), 2 H-C(4) und 2 H-C(4')); 4,00/s (12 H, 4 CH₃O).

Zur Freisetzung der Base wurde eine Suspension von 19,6 g (43 mmol) rohem $rac-7 \cdot 2$ HCl in 300 ml H₂O mit 300 ml CH₂Cl₂ unterschichtet und mit 10proz. NaOH-Lösung unter Rühren auf pH 10-11 gebracht. Nach Abtrennung der CH₂Cl₂-Phase wurde die H₂O-Phase noch 3mal mit CH₂Cl₂ extrahiert. Die vereinigten CH₂Cl₂-Phasen wurden über Na₂SO₄ getrocknet und eingedampft: 14,4 g (74% bzgl. 6) ¹H-NMR.-spektroskopisch reines rac-7, Smp. 179-186° (Zers.), als leicht gelbliches Pulver. Umkristallisation aus C₂H₅OH lieferte farblose feine Nadeln, Smp. 191-193° (Zers.). – IR. (CHCl₃): 3400w br. mit Spitze bei 3290, 2930m, 2840m, 1523s, 1120s, 1110s. – ¹H-NMR. (100 MHz, CDCl₃): 6,80/s (2 H, arom.); 6,60/s (2 H, arom.); 4,53/s (2 H, H-C(1) und H-C(1')); 3,88/s (12 H, 4 CH₃O); 3,5-2,3/m (8 H, 2 H-C(3), 2 H-C(3'), 2 H-C(4) und 2 H-C(4')); 1,89/s (2 H, 2 HN, austauschbar mit D₂O). - MS. (70 eV): 192 (94, $M^+/2$), 191 (100), 190 (38), 189 (19), 177 (16, $M^+/2 - CH_3$), 176 (91), 174 (16), 165 (16), 147 (25), 134 (27).

C22H28N2O4 (384,48) Ber. C 68,73 H 7,43 N 7,29% Gef. C 68,89 H 7,33 N 7,52%

Herstellung von meso-2, 3, 13, 14-Tetramethoxy-5, 6, 7, 9, 10, 11, 15b, 15c-octahydro-8H-diisochino [2, 1c: 1', 2'-e]imidazol³) (meso-8). Nach [3] (etwas modifiziert) wurde eine Lösung von 770 mg (2,0 mmol) meso-7 in 7 ml Dioxan und 0,15 ml (ca. 2 mmol) 38-40proz. Formalin 3 Std. auf dem Wasserbad in einem verschlossenen Gefäss bei 80° gerührt, über Nacht bei RT. stehen gelassen, eingedampft und der gelb-weisse Rückstand aus C₂H₅OH umkristallisiett. Dabei wurden in zwei Ernten 406 mg (51%) meso-8 erhalten, Smp. 148-155° (Zers.; [3]: 154-156°). – IR. (CHCl₃): 2940s, 1515s, 1465s, 1360s, 1130s, 1110s, 1016s. – ¹H-NMR. (100 MHz, C₆D₆): 6,36/s (2 H, arom.); 6,24/s (2 H, arom.); 4,56/s (2 H, H-C(15b) und H-C(15c)); 4,54/d (j = 7, 1 H, 1 H-C(8)); 3,59/d (J = 7, 1 H, 1 H-C(8)); 3,38/s (6 H, 2 CH₃O); 3,31/s (6 H, 2 CH₃O); 2,79/t (J = 6, 4 H, 2 H-C(6) und 2 H-C(10)); 2,41/t (J = 6, 4 H, 2 H-C(5) und 2 H-C(11)). Entkopplung: Einstrahlen bei 4,54 (1 H-C(8)) ergibt: 3,59/s (1 H-C(8)). – MS. (70 eV): 206 (16), 205 (20), 191 (24), 79 (100).

Herstellung von rac-8. Wie oben für meso-7 beschrieben, wurde rac-7 (770 mg) mit Formalin behandelt. Das ausgefallene Produkt wurde abfiltriert, mit wenig C₂H₅OH gewaschen und getrocknet: 421 mg (53%) rac-8 als weisses Pulver, Smp. 198-200° (Zers.). Nach Eindampfen des Filtrates und Rühren des Rückstandes mit 10–15 ml C₂H₅OH war eine 2. Ernte von 113 mg (14%), Smp. 197-199° (Zers.), und danach eine 3. Ernte von 72 mg (9%), Smp. 190-196° (Zers.), desselben Materials isolierbar. Umkristallisation der 1.Ernte aus C₂H₅OH lieferte ein Produkt vom Smp. 204-205° (Zers.; [3]: 208-209°). – IR. (CHCl₃): 2940s, 1515s, 1468s, 1355s, 1125s. – ¹H-NMR. (100 MHz, C₆D₆/CDCl₃): 6,47/s (2 H, arom.); 6,28/s (2 H, arom.); 4,01/s (2 H, H–C(15b) und H–C(15c) oder 2 H–C(8)); 3,92/s (2 H–C(8) oder H–C(15b) und H–C(15c)); 3,48/s (6 H, 2 CH₃O); 3,34/s (6 H, 2 CH₃O); 3,3-2,7/m (4 H, 2 H–C(6) und 2 H–C(10)); 2,62/t (J=6, 4 H, 2 H–C(5) und 2 H–C(11)). – MS. (70 eV): 206 (17), 205 (100), 204 (10), 191 (27), 192 (27).

Herstellung von meso-2, 2'-Diäthoxycarbonyl-6, 6', 7, 7'-tetramethoxy-1, 1', 2, 2', 3, 3', 4, 4'-octahydro-1, 1'biisochinolin (meso-9). Zu einer Lösung von 385 mg (1,0 mmol) meso-7 in 5 ml CH₂Cl₂ wurden unter Kühlung im Eisbad zunächst 506 mg (5,0 mmol) Triäthylamin und dann 432 mg (4,0 mmol) Chlorameisensäure-äthylester, je gelöst in 3 ml CH₂Cl₂, getropft. Nach 3stdg. Rühren bei RT. wurde die Lösung 3mal mit 3proz. HCl-Lösung geschüttelt, die CH₂Cl₂-Phase über Na₂SO₄ getrocknet und eingedampft. Trocknen ergab 497 mg (94%) meso-9 als weissen Festkörper, Smp. 213-216°. Umkristallisation aus C₂H₅OH lieferte farblose Plättchen, Smp. 216-217°. – IR. (CHCl₃): 2960w, 2940w, 2840w, 1685s, 1515s, 1468s, 1432s, 1100s. – ¹H-NMR. (60 MHz, CF₃COOH, unter O₂-Ausschluss): 6,92/br. s (2 H, arom.); 6,77/br. s (2 H, arom.); 5,70/br. s (2 H, H--C(1) und H-C(1')); 4,30/qa (J=7, 4 H, 2 CH₃CH₂O); 4,4-3,2 (teilweise verdeckt, 4 H, 2 H--C(3) und 2 H-C(3')); 3,98/s (6 H, 2 CH₃O); 3,90/s (6 H, 2 CH₃O); 2,93/t (br., J=6, 4 H, 2 H-C(4) und 2 H-C(4')); 1,40/t (J=7, 6 H, 2 CH₃CH₂O). – MS. (70 eV): 264 (100, $M^+/2$), 236 (28, $M^+/2-C_2H_4$), 192 (14, $M^+/2-CO_2C_2H_4$).

C₂₈H₃₆N₂O₈ (528,61) Ber. C 63,62 H 6,86 N 5,30% Gef. C 63,77 H 6,57 N 5,47%

Herstellung von rac-9. Eine Lösung von 14,0 g (36 mmol) *rac*-7 und 15 ml (109 mmol) Triäthylamin in 220 ml CH₂Cl₂ wurde im Verlauf von 50 Min. unter Eiskühlung zu 22 ml (230 mmol) Chlorameisensäure-äthylester getropft. Nach 3stdg. Rühren bei RT. wurde die Lösung mit 150 ml 5proz. Sälzsäure und danach mit 100 ml Wasser gewaschen, die CH₂Cl₂-Phase über Na₂SO₄ getrocknet und eingedampft. Trocknen ergab 18,6 g (97%) ¹H-NMR.-spektroskopisch reines *rac*-9 als schwach gelb gefärbtes Pulver, Smp. 144–146°. Umkristallisation aus C₂H₅OH lieferte ein analytisch reines Präparat als farblose Plättchen, Smp. 148–150°. – IR. (CHCl₃): 2960m, 2905m, 1690s, 1515s, 1468s, 1435s br., 1340s, 1125s. – ¹H-NMR. (60 MHz, CF₃COOH, unter O₂-Ausschluss): 7,00/s (2 H, arom.); 5,90/s (2 H, arom.); 5,33/s (2 H, H–C(1) und H–C(1')); 4,40/qa (J=7, 4 H, 2 CH₃CH₂O); 3,95/s (6 H, 2 CH₃O); 3,55/s (6 H, 2 CH₃O); 4,1–3,7/m (teilw. verdeckt, 4 H, 2 H–C(3)

³) IUPAC-Name von 8: 2,3,13,14-Tetramethoxy-5,6,7,9,10,11,15b,15c-octahydro-8*H*-isochino-[1',2':5,1]imidazo[4,3-*a*]isochinolin.

und 2 H–C(3')); 3,20/m (4 H, 2 H–C(4) und 2 H–C(4')); 1,45/t (J = 7, 6 H, 2 CH₃CH₂O). – MS. (70 eV): 264 (100, $M^+/2$), 236 (21, $M^+/2 - C_2H_4$), 192 (12, $M^+/2 - CO_2C_2H_4$).

C₂₈H₃₆N₂O₈ (528,61) Ber. C 63,62 H 6,86 N 5,30% Gef. C 63,73 H 6,82 N 5,58%

Herstellung von meso-2, 2'-Dimethyl-6, 6', 7, 7'-tetramethoxy-1, 1', 2, 2', 3, 3', 4, 4'-octahydro-1, 1'-biisochinolin (meso-10). a) Über 2,2'-Dimethyl-6,6',7,7'-tetramethoxy-3,3',4,4'-tetrahydro-1,1'-biisochinoliniumdi(p-tolylsulfonat) (11) durch NaBH₄-Reduktion. Eine Lösung von 10,0 g (26 mmol) 6 und 11,0 g (59 mmol) p-Toluolsulfonsäuremethylester in 30 ml Dimethylformamid wurde 10 Std. bei 80° gerührt und dann eingedampft. Mehrmaliges Verrühren des braunroten Rückstandes mit Äther ergab 22,9 g 11 als gelb-oranges, stark hygroskopisches Pulver. Das gesamte Material wurde in 150 ml H₂O gelöst, im Verlauf von ca. 20 Min. tropfenweise mit einer Lösung von 10,0 g (264 mmol) NaBH₄ in 180 ml H₂O behandelt und das trübe Gemisch mit 10proz. NaOH-Lösung auf ca. pH 12 gebracht. Dreimalige Extraktion mit CH_2Cl_2 , Trocknen über MgSO₄ und Eindampfen ergaben 11.2 g rohes meso-10 als gelbes Öl, das nach Rühren in 40 ml C₂H₅OH in einer Ausbeute von 7,84 g (72%) als weisses Pulver kristillisierte, Smp. 131-135°. Umkristallisation aus C2H5OH lieferte ein analysenreines Präparat, Smp. 137-138°. - IR. (CHCl3): 2960m, 2910m, 2840m, 1515s, 1470s, 1378m. - ¹H-NMR. (60 MHz, CDCl₃): 6,60/s (2 H, arom.); 6,27/s (2 H, arom.); 3,86/s (8 H, 2 CH₃O), H-C(1) und H-C(1'); 3,67/s (6 H, 2 CH₃O); 3,5-2,2/m (teilw. verdeckt, 8 H, 2 H-C(3), 2 H-C(3'), 2 H-C(4) und 2 H-C(4')); 2,60/s (6 H, 2 CH₃N). ¹H-NMR. (60 MHz, C₆D₆/CDCl₃): 6,45/s (2 H, 2 HAr); 6.42/s (2 H, 2 HAr); 3,92/s (2 H, H-C(1) und H-C(1')); 3,52/s (6 H, 2 CH₃O); 3,47/s (6 H, 2 CH₃O); 3,2-2,0/m (teilw. verdeckt, 8 H, 2 H–C(3), 2 H–C(3'), 2 H–C(4')); 2,55/s (6 H, 2 CH₃N). - MS. (70 eV): 206 (100, $M^+/2$), 194 (10), 190 (10), 181 (14).

C₂₄H₃₂N₂O₄ (412,53) Ber. C 69,88 H 7,82 N 6,79% Gef. C 70,31 H 7,61 N 6,53%

b) Durch reduktive Methylierung von meso-7. Zu einer Suspension von 384 mg (1,0 mmol) meso-7 in 12 ml CH₃CN wurden 790 mg (10 mmol) 38-40proz. Formalin gegeben; dabei löste sich die Suspension vorübergehend fast vollständig auf. Die nach *ca.* 3 Min. erneut trüb gewordene Lösung wurde mit 300 mg (*ca.* 4 mmol) 90proz. Natriumcyanoborhydrid und danach mit 0,2 ml CH₃COOH versetzt, wobei sich das Gemisch leicht erwärmte. Nach 2stdg. Rühren bei RT. wurden nochmals 0,2 ml CH₃COOH und *ca.* 100 mg Natriumcyanoborhydrid zugegeben und 30 Min. weiter gerührt. Die Suspension wurde in 100 ml Äther aufgenommen und das Extrakt mit 1N NaOH ausgeschüttelt. Trocknen der Ätherphase über Na₂SO₄ und Abdampfen des Äthers ergaben 391 mg (95%) ¹H-NMR.-spektroskopisch reines *meso*-10 als schaumigen Festkörper, welcher aus CH₃OH als weisses Pulver kristallisierte, Smp. 137-139°. IR.- und ¹H-NMR. des so erhaltenen Produktes sind identisch mit den in a) beschriebenen.

Herstellung von rac-10. Zu einer eisgekühlten Lösung von 18,0 g (34 mmol) rac-9 in 150 ml trocknem Tetrahydrofuran wurde unter Rühren im Verlauf von ca. 10 Min. eine Suspension von 12,0 g (320 mmol) LiAlH₄ und 21,0 g AlCl₃ (157 mmol) in 530 ml Tetrahydrofuran gegeben und dann 2 Std. unter Rückfluss erhitzt. Nach Abkühlung der Lösung auf 0° wurde das überschüssige LiAlH₄ mit ca. 120 ml Essigester zerstört, Eiswasser zugegeben, mit 10proz. NaOH-Lösung basisch gestellt und der entstandene Brei abgenutscht. Der Filterkuchen wurde 2mal mit je ca. 600 ml CH₂Cl₂ aufgeschlämmt, die Suspension filtriert, das Filtrat über MgSO₄ getrocknet und eingedampft. Der gelbe, schaumige Rückstand liess sich mit ca. 100 ml C₂H₃OH zur Kristallisation aus C₂H₅OH lieferte ein analysenreines Präparat, Smp. 156-157°. – IR. (CHCl₃): 2945m, 2915m, 1517s, 1470s, 1260s, 1145s. – ¹H-NMR. (60 MHz, C₆D₆): 7,47/s (2 H, arom.); 6,17/s (2 H, arom.); 3,80/s (2 H, 2H-C(1) und H-C(1')); 3,58/s (6 H, 2 CH₃O); 3,23/s (6 H, 2 CH₃O); 3,2-2,0/m, (teilw. verdeckt, 8 H, 2H-C(3), 2H-C(3), 2H-C(4) und 2H-C(4')); 2,43/s (6 H, 2 CH₃O). – MS. (70 eV): 206 (100, $M^+/2$), 205 (15), 204 (27), 192 (14), 191 (18), 165 (27), 150 (27).

C24H32N2O4 (412,52) Ber. C 69,88 H 7,82 N 6,79% Gef. C 69,79 H 7,93 N 7,17%

Versuch zur reduktiven Methylierung von rac-7 mit $CH_2O/NaBH_3CN$. Zu einer Suspension von 2,3 g (4,7 mmol) rac-7 in 75 ml CH₃CN wurden 4,7 g (60 mmol) 38-40proz. Formalin gegeben, wobei sich vorübergehend die Suspension fast vollständig löste. Nach ca. 3 Min. wurden 1,7 g (ca. 24 mmol) ca. 90proz. Natriumcyanoborhydrid und 1,2 ml CH₃COOH zugegeben. Nach 1 Std. weiterrühren bei RT. wurde das Gemisch in ca. 200 ml Äther aufgenommen und Imal mit 5proz. NaOH-

Lösung geschüttelt. Trocknen der Ätherphase über Na_2SO_4 und Eindampfen ergaben 2,7 g (nach seinem ¹H-NMR.) komplexes Gemisch als harzigen Rückstand. Kristallisation und anschliessende Umkristallisation aus Äthanol lieferten 1,05 g schwach gelb gefärbte Prismen, Smp. 170-300° (Hauptmenge schmilzt zwischen 169-176° unter Gasentwicklung, anschliessend allmähliche Zers.). Aufgrund der folgenden Spektraldaten dürfte dieses Produkt vorwiegend aus einer Substanz X bestehen, der wir vorläufig die folgende Struktur zuordnen:

UV. (CHCl₃): 292, 287. – 1R. (CHCl₃): 3000*m*, 2960*m*, 2940*m*, 2860*w*, 2840*w*, 2440*m* br. (B–H?), 2190*w* (C=N), 1615*m*, 1515*s*, 1465*s*, 1355*s*, 1255*s*, 1125*s*. – ¹H-NMR. (360 MHz, CDCl₃): 6,78/*s* (1 H, arom.); 6,71/*s* (1 H, arom.); 6,33/*s* (1 H, arom.); 5,94/*s* (1 H, arom.); 4,64 und 4,39/*AB*-System (J_{AB} =9, 2 H, 2 H–C(1") oder H–C(1) und H–C(1')); 4,09 und 4,02/*AB*-System (J_{AB} =10,5, 2 H, H–C(1) und H–C(1') oder 2 H–C(1"); 3,92/*s* (3 H, CH₃O); 3,90/*s* (3 H, CH₃O); 3,72/*s* (3 H, CH₃O); 3,59/*s* (3 H, CH₃O); 3,65–3,54/*m* (teilw. verdeckt, 1 H), 3,49/*d*×*d*×*d* (J=13, 7,5 und 4,5, 1 H), 3,13–2,92/*m* (3 H) und 2,88–2,78/*m* (*t*-artig, 3 H; zusammen 2 H–C(3), 2 H–C(3), 2 H–C(4), 2 H–C(4')); 1,59/br. *s* (1 H, austauschbar mit D₂O, HN?). – ¹³C-NMR. (25,2 MHz, CDCl₃): 148,9/*s*, 148,3/*s*, 147,0/*s* und 146,4/*s* (4 arom. C mit CH₃O-Substituent); 132,2/*s* (C=N); 127,5/*s*, 125,2/*s* (122,5/*s* und 121,6/*s* (4 quartäre arom. C); 112,8/*d*, 111,5/*d* und 111,2/*d* (4 tertiäre arom. C); 82,7/*t* (C(1")); 71,8/*d* und 25,8/*t* (4 CH₂). – MS. (70 eV): 205 (100), 190 (26).

In Widerspruch mit einer sicheren Zuordnung von Struktur X sind die Befunde, dass das IR. keine NH-Bande, aber eine im Frequenzbereich der (B-H)-Schwingungen liegende Bande bei 2450 cm⁻¹ aufweist. Zudem liessen sich keine gut übereinstimmenden Elementaranalysenwerte erhalten (Ber. für X: C 68,06 H 6,90 N 9,92% Gef. aus 3 Bestimmungen: C 63,81 - 67,49 H 6,68 - 7,07 N 9,01 - 9,66%), jedoch wurde die Anwesenheit von Bor auch durch Atomabsorption nachgewiesen, so dass möglicherweise X mit einem Borhydrid entweder komplexiert oder verunreinigt ist.

Nach 17std. Erhitzen einer Probe des X-enthaltenden Produktes in C_2H_5OH wurden 90% eines durch sein ¹H-NMR. als *rac*-8 identifiziertes Produkt erhalten.

Herstellung von 3, 3', 4, 4'-Tetrahydro-[1, 1'-biisochinolin]-6, 6', 7, 7'-tetrol-dihydrobromid ($12 \cdot 2$ HBr). Eine Lösung von 4,0 g (10,5 mmol) 6 in 35 ml 48proz. wässerige HBr-Lösung wurde 22 Std. unter Rückfluss erhitzt. Der orange-rote Niederschlag wurde abfiltriert, nacheinander 3mal mit wenig H₂O, Aceton und Äther gewaschen, und bei 0,01 Torr getrocknet: 3,5 g (69%) 12 · 2 HBr als orange-farbenes Pulver, Smp. 244-247° (Zers.). - UV. (C₂H₅OH): 384 (10100), 321 (12800), 300 (10200) Sch., 243 (25300). - IR. (KBr): 3380m, 3130s br., 2810s br., 2600s br., 1600s, 1565s, 1472s, 1420s, 1335s, 1310s, 1295s. - ¹H-NMR. (60 MHz, CD₃OD/Pyridin-d₅): 6,80/s (4 H, arom.); 3,93/t (J=8, 4 H, 2 H-C(3) und 2 H-C(3')); 2,91/t (J=8, 4 H, 2 H-C(4) und 2 H-C(4')).

Herstellung von meso-1, 1', 2, 2', 3, 3', 4, 4'-Octahydro-[1, 1'-biisochinolin]-6, 6', 7, 7'-tetrol-dihydrobromid (meso-13 · 2 HBr). Eine Lösung von 7,0 g (18,2 mmol) meso-7 in 110 ml 48proz. wässerigen HBr-Lösung wurde 3,5 Std. unter Rückfluss erhitzt, wobei sich ein weisser Niederschlag bildete. Filtrieren der abgekühlten Suspension, 3mal Waschen des Filterkuchens mit wenig H₂O und Trocknen desselben bei 90°/0,01 Torr ergaben 7,5 g (84%) meso-13 · 2 HBr · H₂O als weisses Pulver, Smp. 266-267° (Zers.). - IR. (KBr): 3480s, 3170s br., 2990s br., 2920s br., 2750s br., 1565s, 1530s, 1300s, 1255s, -¹H-NMR. (60 MHz, CD₃OD/Pyridin-d₅): 6,75/s (2 H, arom.); 6,66/s (2 H, arom.); 4,93/s (2 H, H-C(1) und H-C(1')); 3,3-2,95/m (4 H, 2 H-C(3) und 2 H-C(3')); 2,95-2,5/m (4 H, 2 H-C(4) und 2 H-C(4')). C₁₈H₂₂Br₂N₂O₄ · H₂O Ber. C 42,54 H 4,76 Br 31,45 N 5,51%

(508,23) Gef. ,, 42,56 ,, 4,81 ,, 33,65 ,, 5,52%

Herstellung von rac-13 · 2 HBr. Eine Lösung von 2,0 g (5,2 mmol) rac-7 in 100 ml 48proz. wässeriger HBr-Lösung wurde 4 Tage unter Rückfluss erhitzt. Der Niederschlag wurde abfiltriert, nacheinander mit H₂O, Aceton und Äther gewaschen und bei 0,01 Torr getrocknet: 1,94 g (76%) rac-13 · 2 HBr als beiges Pulver, Smp. 240-245° (Zers.). – IR. (KBr): 3500-3000s br., 2960s br., 2810s br., 2660m, 1615m, 1575s, 1535s, 1305s, 1265s, 1235s. – ¹H-NMR. (60 MHz, CD₃OD/Pyridin-d₅): 7,03/s (2 H, arom.); 6,75/s (2 H, arom.); 4,93/s (2 H, H-C(1) und H-C(1')); 3,3-2,3/m (8 H, 2 H-C(3), 2 H-C(3'), 2 H-C(4) und 2 H-C(4')).

$$\begin{array}{ccc} C_{18}H_{22}Br_2N_2O_4 & \text{Ber. C } 44,10 & \text{H } 4,52 & \text{Br } 32,60 & \text{N } 5,70\% \\ (490.21) & \text{Gef. .. } 43,75 & .. & 4,67 & .. & 29,95 & .. & 5,58\% \end{array}$$

Herstellung von meso-2, 2'-Dimethyl-1, 1', 2, 2', 3, 3', 4, 4'-octahydro-[1, 1'-biisochinolin]-6, 6', 7, 7'-tetroldihydrobromid (meso-14 · 2 HBr). Eine Lösung von 6,0 g (14,5 mmol) meso-10 in 120 ml 48proz. wässeriger HBr-Lösung wurde 18,5 Std. unter Rückfluss erhitzt, wobei bereits nach 15 Min. das Produkt auszufallen begann. Nach Abkühlen wurde abfiltriert, und so oft mit kleinen Portionen H₂O gewaschen, bis die Waschlauge farblos war. Waschen mit Aceton und Äther und Trocknen bei 0,01 Torr ergab 7,3 g (97%) meso-14 · 2 HBr als weisses Pulver, Smp. 212-214° (Zers.). – IR. (KBr): 3400-3200s, 3090s, 1615m, 1535m, 1450m, 1400m, 1275s. – ¹H-NMR. (60 MHz, CD₃OD/Pyridin-d₅): 6,60/s (2 H, arom.); 6,26/s (2 H, arom.); 4,36/s (2 H, H-C(1) und H-C(1')); 3,0-2,3/m (verdeckt, 8 H, 2 H-C(3), 2 H-C(3'), 2 H-C(4) und 2 H-C(4')); 2,83/s (6 H, 2 CH₃N).

 $\begin{array}{cccc} C_{20}H_{26}Br_2N_2O_4\cdot 2 \ H_2O & Ber. \ C \ 43,34 & H \ 5,45 & Br \ 28,83 & N \ 5,05\% \\ (554,29) & Gef. \ ,, \ 41,92 & ,, \ 5,38 & ,, \ 29,72 & ,, \ 4,72\% \end{array}$

Herstellung von meso-6, 6', 7, 7'-Tetraäthoxycarbonyloxy-1, 1', 2, 2', 3, 3', 4, 4'-octahydro-[1, 1'-biisochinolin]-2,2'-carbonsäure-diäthylester (meso-15). Zu einer Suspension von 2,2 g (4,5 mmol) meso-13 · 2 HBr in 40 ml CHCl₃ wurden unter Eiskühlung zunächst 6,8 g (67 mmol) Triäthylamin und dann 5,8 g (54 mmol) Chlorameisensäure-äthylester, beide gelöst in je 10 ml CHCl3, getropft. Nach 4stdg. Rühren bei RT. wurde die klare, schwach braune Lösung 3mal mit H₂O geschüttelt, die CHCl₃-Phase über Na₂SO₄ getrocknet und eingedampft. Der feste Rückstand wurde mit 10 ml C_2H_5OH versetzt, über Nacht gerührt, abfiltriert und getrocknet: 2,6 g (75%) meso-15 als weisses Pulver, Smp. 184-186°. Umkristallisation aus C2H5OH lieferte reines meso-15 als weisses Pulver, Smp. 185-186°. -IR. (KBr): 2990w, 1770s, 1695m, 1375m. - ¹H-NMR. (100 MHz, C₆D₅NO₂, RT.): 7,3-6,6/4 br. Signale mit Spitzen bei 7,29, 7,08, 6,97 und 6,70 (Verhältnis ca. 1:3:3:1, insgesamt 4 H, arom.); 5,7-5,2/2 br. Signale mit Spitzen bei 5,56 und 5,40 (insgesamt 2 H, H-C(1) und H-C(1')); 4,5-3,8 (m mit qa-Struktur, J = 7, 12 H, 6 CH₁CH₂O); 3,8-2,2/br. Signale mit Spitzen bei 3,5 und 2,7 (insgesamt 8 H, 2 H–C(3), 2 H–C(3'), 2 H–C(4) und 2 H–C(4')); 1,24/t (br., J=7, 18 H, 6 CH₃CH₂O). – ¹H-NMR. (100 MHz, C₆D₅NO₂, 120°): 7,00/s (2 H, arom.); 6,94/s (2 H, arom.); 5,53/s (2 H, H-C(1) und H-C(1')); 4,21/qa (J=7), 4,20/qa (J=7) und 4,08/qa (J=7; insgesamt 12 H, 6 CH₃CH₂O); 3,9-3,5/m und 3,4-2,9/m (zusammen 4 H, 2 H-C(3) und 2 H-C(3')); 2,66/t (J=7, 4 H, 2 H-C(4) und 2 H-C(4'); 1,22/t (J=7) und 1,17/t (J=7; insgesamt 18 H, 6 CH₃CH₂O). Nach Abkühlen auf RT. zeigte die Probe wieder das zuvor beschriebene komplexe Spektrum. - MS. (12 eV): 380 (100, $M^+/2$, 308 (30, $M^+/2 - \text{CO}_2\text{C}_3\text{H}_4$). - Osmometrische Molekulargewichtsbestimmung (CHCl₃): Ber. 760. Gef. 708.

C₃₆H₄₄N₂O₁₆ (760,76) Ber. C 56,84 H 5,83 N 3,68% Gef. C 56,74 H 5,91 N 3,92%

Herstellung von rac-15. Wie oben für meso-13 · 2 HBr beschrieben, wurde rac-13 · 2 HBr (6,0 g) behandelt. Die leicht gelbe Suspension wurde 3mal mit H₂O geschüttelt, die CH₂Cl₂-Phase über Na₂SO₄ getrocknet und eingedampft. Trocknen des Rückstandes bei 50°/0,01 Torr lieferte 8,8 g (94%) gemäss ¹H-NMR. ca. 90% reines rac-15 als gelb-braunes Öl, welches nach Rühren in 50 ml C₂H₅OH 4,7 g (50%) weisses Pulver, Smp. 128-132°, ergab. Umkristallisation aus C₂H₅OH ergab reines rac-15 als kleine Prismen, Smp. 134-137°. – IR. (CHCl₃): 2990w, 1770s, 1695s, 1375m. – ¹H-NMR. (100 MHz, C₆D₅NO₂, RT.): 7,06/s br. (2 H, arom.); 6,20/s br. (2 H, arom.); 5,4-4,8/2 br. Signale mit Spitzen bei 5,16 und 4,98 (Verhältnis ca. 1:2, 2 H, H-C(1) und H-C(1')); 4,18 und 4,15/2 sich überlagernde qa (J=7, insgesamt 12 H, 6 CH₃CH₂O); 3,9-2,2/3 br. Signale mit Spitzen bei 3,64, 3,15 und 2,70 (8 H, 2 H-C(3), 2H-C(4) und 2 H-C(4')); 1,20 und 1,17/2 sich überlagernde, br. t

 $(J=7, \text{ insgesamt 18 H, 6 } CH_3CH_2O)$. - ¹H-NMR. (100 MHz, C₆D₅NO₂, 120°): 7,01/s (2 H, arom.); 6,29/s (2 H, arom.); 5,17/s (2 H, H-C(1) und H-C(1')); 4,16/qa (J=7) und 4,14/qa (J=7; insgesamt 12 H, 6 CH₃CH₂O); 3,9-3,6/m, 3,6-3,3/m und 3,2-2,4/m (zusammen 8 H, 2 H-C(3), 2 H-C(3'), 2 H-C(4) und 2 H-C(4')); 1,20/t (J=7) und 1,17/t (J=7; insgesamt 18 H, 6 CH₃CH₂O). Nach Abkühlen auf RT. zeigte die Probe wieder das zuvor beschriebene komplexe Spektrum. - MS. (70 eV): 380 (100, $M^+/2$), 322 (50), 308 (50, $M^+/2 - CO_2C_2H_4$).

C₃₆H₄₄N₂O₁₆ (760,76) Ber. C 56,84 H 5,83 N 3,92% Gef. C 56,53 H 6,01 N 3,84%

Herstellung von meso-6, 6', 7, 7'-Tetrahydroxy-1, 1', 2, 2', 3, 3', 4, 4'-octahydro-[1, 1'-biisochinolin]-2, 2'-dicarbonsäure-diäthylester (meso-16). Eine Suspension von 5,0 g (6,6 mmol) meso-15 in 200 ml 3proz. NaOH-Lösung/C₂H₅OH 3:1 wurde bis zur Auflösung (ca. 15 Min.) unter Rückfluss erhitzt und die klare, dunkelgrüne Lösung eingedampft. Der Rückstand wurde in 100 ml H₂O aufgenommen und mit 10proz. Salzsäure auf pH 1 gebracht. Das ausgefällte Produkt wurde abfiltriert, mit C₂H₅OH und CHCl₃ gewaschen, in Äther gerührt und abzentrifugiert: 1,4 g (45%) meso-16 als hellbraunes Pulver, Smp. 230-290° (allmähliche Zers.). – IR. (KBr): 3470s, 3090m br., 2990m, 1650m, 1615m, 1525m, 1480m, 1295s. – ¹H-NMR. (60 MHz, CF₃COOH, unter O₂-Ausschluss): 7,0-6,7/3 br. s bei 6,93, 6,86 und 6,76 (Verhältnis ca. 1:1, 5:2, insgesamt 4 H, arom.); 5,6-5,2/2 br. s bei 5,45 und 5,30 (Verhältnis ca. 2:1, insgesamt 2 H, H-C(1) und H-C(1')); 4,16/qa (J=7, 4 H, 2 CH₃CH₂O); 4,3-3,3m (teilw. verdeckt. 4 H, 2 H-C(3) und 2 H-C(3')); 3,2-2,6/m (4 H, 2 H-C(4) und 2 H-C(4')); 1,28/t (br. J=7, 6 H 2 CH₃CH₂O). – MS. (70 eV): 236 (100, $M^+/2$), 164 (85, $M^+/2$ -CO₂C₂H₄), 163 (100, $M^+/2$ -CO₂C₂H₅).

 $C_{24}H_{28}N_2O_8 \cdot \frac{1}{2}H_2O$ (472,50) Ber. C 59,86 H 6,07 N 5,81% Gef. C 59,78 H 5,46 N 6,08%

Herstellung von rac-16. Wie oben für meso-15 beschrieben, wurde rac-15 (170 mg) verseift. Die klare, gelbe Lösung wurde unter N₂ langsam mit ca. 9 ml 10proz. Salzsäure versetzt und anschliessend 4mal mit CHCl₃ extrahiert. Die vereinigten CHCl₃-Phasen wurden mit gesättigter NaHCO₃-Lösung geschüttelt, über Na₂SO₄ getrocknet und eingedampft. Trocknen ergab 105 mg (100%) rac-16 als gelben Festkörper, Smp. 120-150° (allmähliche Zers.). – IR. (KBr): 3300s br., 2960m br., 1665s br., 1515m br., 1430s br., 1380s, 1335s, 1275s br., 1225s. – ¹H-NMR. (60 MHz, CF₃COOH, unter O₂-Ausschluss): 6,83/br. s (2 H, arom.); 5,83/br. s (2 H, arom.); 5,13/s br. (2 H, H–C(1) und H–C(1')); 4,6-4,0/m, 4,0-3,6/m und 3,6-2,4/m überlappend (zusammen 12 H, 2 CH₃CH₂O, 2 H–C(3), 2 H–C(3'), 2 H–C(4) und 2 H–C(4')); 1,33/t (br., J=7, 2 CH₃CH₂O). – MS. (70 eV): 250 (50), 236 (100, $M^+/2$), 164 (25, $M^+/2$ -CO₂C₂H₃), 163 (50, $M^+/2$ -CO₂C₂H₃), 162 (50).

 $C_{24}H_{28}N_2O_8 \cdot H_2O(472,50)$ Ber. C 58,77 H 6,16 N 5,71% Gef. C 58,11 H 6,25 N 5,48%

Herstellung von meso-6,6',7,7'-Tetramethoxy-2,2'-oxalyl-1,1',2,2',3,3',4,4'-octahydro-1,1'-biisochinolin (meso-17). Eine Suspension von 1,15 g (3 mmol) meso-7 und 2,2 g (15 mmol) Oxalsäurediäthylester in 5 ml C₂H₅OH wurde 2,5 Std. unter Rückfluss erhitzt, wobei eine klare Lösung entstand. Nach ca. 14stdg. Stehen bei -20° wurde das auskristallisierte Produkt abfiltriert, mit C₂H₅OH gewaschen und getrocknet: 1,12 g (85%) meso-17 als farblose Nädelchen, Smp. 169-172°. Analysenreines meso-17 entstand durch 2maliges Umkristallisieren aus C₂H₅OH, Smp. 165,5-166,3°. - UV. (C₂H₅OH): 284 (7500), 232 (22000). - IR. (CHCl₃): 3010m, 1685s br., 1520s, 1470s, 1260s, 1115s. - ¹H-NMR. $(360 \text{ MHz}, \text{ CDCl}_3, 24^\circ): 6,85/s \text{ und } 6,76/s \text{ (je 1 H, H-C(5) und H-C(5'))}; 6,56/s \text{ und } 6,00/s \text{ (je 1 H, H-C(5'))}; 6,56/s \text{ (je 1 H, H-C(5$ H-C(8) und H-C(8'); 5,53/d (J=4,0) und 5,09/d (J=4,0; je 1 H, H-C(1) und H-C(1')); 4,72/d×d×d $(J=12,5, 7,0 \text{ und } 3,0, 1 \text{ H}, \text{H}_{aq}-C(3)); 4,66/d \times d \times d (J=13,0, 5,0 \text{ und } 3,0, 1 \text{ H}, \text{H}_{aq}-C(3')); 3,90/s$ $(3 \text{ H}, \text{ CH}_3\text{O}); 3,88/s \ (3 \text{ H}, \text{ CH}_3\text{O}); 3,70/s \ (3 \text{ H}, \text{ CH}_3\text{O}); 3,37/d \times d \times d \ (J = 12,5, 10,5 \text{ und } 5,0, 1 \text{ H}, 10,5 \text{ m})$ $H_{ax}-C(3)$; 3,34/s (3 H, CH₃O); 3,24/d×d×d (J=16,5, 10,5 und 7,0, 1 H, $H_{ax}-C(4)$); 3,17/d×d×d $(J=12,5, 13,0 \text{ und } 3,5, 1 \text{ H}, \text{ H}_{ax}-\text{C}(3')); 2,96/d \times d \times d (J=15,5, 12,5 \text{ und } 5,0, 1 \text{ H}, \text{ H}_{ax}-\text{C}(4'));$ $2,85/d \times d \times d$ (J=15,5, 3,5 und 3,0, 1 H, H_{aq}-C(4')); $2,69/d \times d \times d$ (J=16,5, 5,0 und 3,0, 1 H, $H_{aq}-C(4)$). Das 100-MHz-¹H-NMR. (C₆D₅NO₂) war, abgesehen von höherer Ordnung und kleinen Lösungsmittel-Verschiebungseffekten, dem 360-MHz-1H-NMR. (CDCl3) gleich; nach dem Erhitzen der Probe auf 90° blieb es unverändert. - MS. (70 eV): 438 (7, M^+), 410 (10, M^+ - CO), 219 (20, $M^+/2$, 218 (72), 206 (10), 192 (20), 191 (100, $M^+/2$ – CO), 190 (35), 189 (14), 177 (34), 172 (17), 171 (12), 170 (38).

C₂₄H₂₆N₂O₆ (438,47) Ber. C 65,74 H 5,98 N 6,39% Gef. C 65,67 H 6,03 N 6,46%

Herstellung von rac-17. Wie oben für *meso-*7 beschrieben, wurde *rac-*7 (1,05 g) behandelt: 1,06 g (89%) *rac-*17 als analysenreines, mikrokristallines Material, wobei ein Teil der Kristalle bei 246° und der Rest bei 254-259° schmolz. - UV. (C₂H₅OH): 285 (6500), 228 (24500) Sch. - IR. (CHCl₃): 3010*m*, 2960*w*, 2910*w*, 2840*w*, 1680*s*, 1615*m*, 1515*s*, 1470*s*, 1445*s*, 1405*m*, 1365*s*, 1330*m*, 1320*m*, 1310*m*, 1265*s*, 1195*m*, 1125*s*, 1020*m*, 870*m*. - ¹H-NMR. (360 MHz, CDCl₃, 24°): 6,74/s (2 H, H-C(5) und H-C(5')); 5,44/*s* (2 H, H-C(8) und H-C(8')); 5,00/ $d \times d \times d$ (J = 12, 5 und 3, 2 H, H_{aq}-C(3) und H_{aq}-C(3')); 4,65/*s* (2 H, H-C(1) und H-C(1')); 3,88/*s* (6 H, CH₃O-C(6) und CH₃O-C(6')); 3,34/*s* (6 H, CH₃O-C(7) und CH₃O-C(7')); 3,04/ $d \times d \times d$ (J = 12, 16 und 5, 2 H, H_{ax}-C(4) und H_{ax}-C(4')); 2,85/ $d \times d \times d$ (J = 12, 12 und 3, 2 H, H_{ax}-C(3) und H_{ax}-C(3')); 2,81/ $d \times d \times d$ (J = 16, 3 und 3, 2 H, H_{aq}-C(4) und H_{aq}-C(4')). Das 100-MHz-¹H-NMR. (C₆D₅NO₂) war, abgeshen von höherer Ordnung und kleinen Lösungsmittel-Verschiebungseffekten, dem 360-MHz-¹H-NMR. (CDCl₃) gleich; nach dem Erhitzen der Probe auf 90° blieb es unverändert. - MS. (70 eV): 438 (22, M^+), 410 (5, M^+ - CO), 192 (22), 191 (100, $M^+/2$ -CO), 190 (16), 176 (31).

C24H26N2O6 (438,47) Ber. C 65,74 H 5,98 N 6,39% Gef. C 65,77 H 5,93 N 6,36%

Herstellung von meso-2,2'-Äthano-6,6',7,7'-tetramethoxy-1,1',2,2',3,3',4,4'-octahydro-1,1'-biisochinolin (meso-18). Eine Suspension von 1,06 g (2,42 mmol) meso-17 in 25 ml Tetrahydrofuran wurde unter Rühren portionenweise mit einer Suspension von 0,92 g (24 mmol) LiAlH₄ und 1,6 g (12 mmol) AlCl₃ in 25 ml Tetrahydrofuran im Verlauf von 10 Min. behandelt und 4 Std. unter Rückfluss erhitzt. Das eisgekühlte Gemisch wurde nacheinander mit 10 ml Essigester und 10 ml H2O versetzt und dann mit 50proz. KOH-Lösung auf pH 10-11 gebracht. Die ausgefällten Salze wurden sofort abfiltriert und mit ca. 150 ml CH₂Cl₂ extrahiert. Trocknen des Filtrates über MgSO₄ und Eindampfen ergaben einen bräunlichen Rückstand, aus dem durch präp. DC. (Kieselgel, CHCl₃/CH₃OH 4:1) 792 mg (80%) meso-18 (Rf 0,5) als weisses Pulver isoliert wurde, Smp. 172-174°. Umkristallisation aus C2H5OH lieferte farblose Rhomben, Smp. 176°. - UV. (C2H5OH): 285 (6200), 230 (12500) Sch. -IR. (CHCl₃): 2940m, 1518s, 1470s, 1265s, 1145s. - ¹H-NMR. (100 MHz, CDCl₃ - 20°): 6,83/s (1 H, HAr); 6,66/s (1 H, arom.); 6,50/s (1 H, HAr); 6,16/s (1 H, HAr); 4,70/br. s und 3,92/s verdeckt (je 1 H, H-C(1) und H-C(1')); 3,86/s (3 H, CH₃O); 3,82/s (3 H, CH₃O); 3,77/s (3 H, CH₃O); 3,20/s (3 H, CH₃O); 3,6-2,3/m (12 H, 6 CH₂). - ¹H-NMR. (100 MHz, C₆D₅NO₂, 150°): 6,73/s und 6,71/s (je 2 H, 4 HAr); 4,3/s br. (2 H, H-C(1) und (H-C(1')); 3,81/s (6 H, 2 CH₃O); 3,58/s (6 H, 2 CH₃O); 4.0-2.4/m (12 H, 6 CH₂). - Koaleszenzspektrum, RT. ¹H-NMR. (100 MHz, C₆D₆, 30°): 6,63/s br. (2 H, arom.); 6,42/s (2 H, arom.); 4,38/s br. (2 H, H-C(1) und H-C(1')); 3,44/s (6 H, 2 CH₃O); 3,24/s (6 H, 2 CH₃O); 3,6-2,2/m (teilw. verdeckt, 12 H, 6 CH₂). - MS. (70 eV): 410 (30, M⁺), 219 (40), 218 (100), 206 (15), 192 (15), 191 (86), 190 (32), 177 (20).

C₂₄H₃₀N₂O₄ (410,50) Ber. C 70,22 H 7,37 N 6,83% Gef. C 70,04 H 7,42 N 6,74%

Herstellung von rac-18. Wie oben für *meso*-17 beschrieben, wurde *rac*-17 (438 mg) reduziert. Durch Trituration mit C₂H₅OH wurden 297 mg (72%) *rac*-18 als weisse Nädelchen erhalten, Smp. 221,5-224°. Zweimalige Umkristallisation aus C₂H₅OH/CHCl₃ lieferte farblose Nadeln, Smp. 226-228°. – UV. (C₂H₅OH): 287 (4500), 230 (11500) Sch. – IR. (CHCl₃). 2940s, 1520s, 1470s, 1265s, 1140s, 1120s, 1020s. – ¹H-NMR. (100 MHz, CDCl₃, 30°): 6,60/s (2 H, H–C(5) und H–C(5′)); 5,86/s br. (2 H, H–C(8) und H–C(8′)); 4,38/s (2 H, H–C(1) und H–C(1′)); 3,82/s (6 H, CH₃O–C(6) und CH₃O–C(6′)); 3,7–2,7/m (12 H, 6 CH₂); 3,48/s (6 H, CH₃O–C(7) und CH₃O–C(7′)). – ¹H-NMR. (100 MHz, CDCl₃, –60°): 6,94/s br. (2 H, H–C(8) und H–C(8′) von Konformer A); 6,69/s (2 H, H–C(5) und H–C(5′)) von Konformer B); 6,69/s (2 H, H–C(5) und H–C(5′) von Konformer A); 6,64/s (2 H, H–C(5) und H–C(5′) von Konformer A); 4,93/s br. (2 H, H–C(1) und H–C(1′) von Konformer B); 4,42/s br. (2 H, H–C(1) und H–C(1′) von Konformer B); 4,42/s br. (2 H, H–C(1) und H–C(1′) von Konformer A); 3,90/s (18 H, 4 CH₃O von Konformer B) und CH₃O–C(6′) und H–C(6′) von Konformer A); 3,41/s (6 H, CH₃O–C(7) und CH₃O–C(7′) von Konformer A); 4,3–2,4/m (24 H, von Konformer A) ig 6 CH₂). – MS. (70 eV): 410 (17, *M*⁺), 219 (30), 218 (100), 206 (16), 192 (22), 191 (83), 190 (39), 189 (10), 177 (16).

 $C_{24}H_{30}N_2O_4\ (410,50) \quad \text{Ber. C } 70,22 \quad \text{H } 7,37 \quad \text{N } 6,83\% \quad \text{Gef. C } 69,87 \quad \text{H } 7,42 \quad \text{N } 6,95\%$

Oxydationen mit Vanadiumoxytrifluorid (VOF₃). - Allgemeine Vorschrift. Zu einer gekühlten Lösung von 1 mmol Reaktant in 15 ml CH₂Cl₂ wurden 2 ml FSO₃H und danach entweder 2 oder 7 mmol VOF₃, gelöst in 20,5 ml CF₃COOH/(CF₃CO)₂O, 40:1, im Verlauf von *ca.* 10 Min. getropft und die

Lösung während einer bestimmten Zeit bei gleicher Temp. (Ausnahme *meso-18*) weitergerührt. Zur Aufarbeitung wurde das Gemisch unter Kühlung ($ca. +10^\circ$) mit 20proz. wässeriger Citronensäure-Lösung (10 ml pro mmol eingesetztes VOF₃) versetzt, danach mit konz. NH₄OH-Lösung auf pH 10 gebracht und das Produkt mit CHCl₃ extrahiert.

Oxydation von rac-7 mit 2 Mol-Äquiv. VOF₃. Mit 385 mg (1,0 mmol) rac-7 und 248 mg (2 mmol) VOF₃ bei -25° während 3 Std. Filtration der CHCl₃-Lösung des Rohproduktes über 15 g Florisil ergab 251 mg (66%) ¹H-NMR.-spektroskopisch reines rac-5, 6, 7, 8-Tetramethoxy-1, 2, 3, 10, 11, 12, 12a, 12b-octahydrodibenzo [de, gh][1, 10] phenanthrolin (rac-19) als orangen Schaum. Zweimalige Kristallisation aus C₂H₅OH/H₂O ca. 10:1 lieferte analysenreines rac-19 als farblose Plättchen, Smp. 151-153°. – UV. (C₂H₅OH): 295 (5800) Sch., 270 (14900). – IR. (CHCl₃): 3000m, 2950m br., 2840m, 1590m, 1490m, 1480s, 1470s, 1420s, 1265s, 1120s. – ¹H-NMR. (60 MHz, CDCl₃): 6,68/s (2 H, arom.); 3,80/s (6 H, 2 CH₃O); 3,60/s (6 H, 2 CH₃O); 3,36/s (2 H, H--C(12a) und H--C(12b)); 3,4-2,5/m (8 H, 4 CH₂); 2,30/s (2 H, 2 HN, austauschbar mit D₂O). – MS. (70 eV): 382 (40, M⁺), 367 (45, M⁺ - CH₃), 351 (20, M⁺ - OCH₃), 233 (60), 160 (100).

C₂₂H₂₆N₂O₄ (382,44) Ber. C 69,09 H 6,85 N 7,33% Gef. C 68,99 H 7,06 N 6,97%

Bei der Behandlung von *rac-7* mit 7 Mol-Äquiv. VOF_3 wurde ein Produkt erhalten, das sich nach DC. als komplexes Gemisch erwies.

Oxydation von meso-10. a) Mit 2 Mol-Äquiv. VOF₃. Aus 413 mg (1,0 mmol) meso-10 und 248 mg (2 mmol) VOF₃ bei -25° während 0,25 Std. wurde ein komplexes Gemisch erhalten, welches gemäss DC. (SiO₂, CH₃OH/CHCl₃/N(C₂H₅)₃ 8:2:1) kein Reaktant mehr enthielt, aus dem aber keine identifizierbaren Produkte isoliert werden konnten.

b) Mit 7 Mol-Äquiv. VOF₃. Mit 413 mg (1,0 mmol) meso-10 und 868 mg (7 mmol) VOF₃ bei -25° während 1,75 Std. Präp. DC. (Alox, CHCl₃) ergab aus der Zone mit Rf 0,7 nach Umkristallisation aus C2H5OH 72 mg (18%) (1R, 2S, 9R/1S, 2R, 9S)-1', 2', 11-Trimethoxy-3, 15-dimethylbenzo [fg]-3,15-diazatetracyclo [7.5.3.0^{2,7}.0^{9,14}]heptadeca-10,13-dien-12-on⁴) (23a) als weisse Rhomben, Smp. 203-205° (Zers.). - UV. (C2H5OH): 280 (7100), 237 (21600). - IR. (CHCl3): 2950s, 1670s, 1645s, 1620s, 1600m, 1465s, 1425s, 1325s, 1095s, 1060s. - ¹H-NMR. (360 MHz, CDCl₃): 7,43/s (1 H, H-C(3')); 6,60/s (1 H, H-C(10)); 6,31/s (1 H, H-C(13)); 3,90/s (3 H, CH₃O); 3,86/s (3 H, CH₃O); 3,83/s (3 H, CH₃O); 3,58/d (J = 5, 1 H, H-C(1)); 3,03/d (J = 5, 1 H, H-C(2)); 3,26-3,07/m (2 H), $2,83/d \times d \times d$ (J = 15, 11,5) und 4, 1 H), $2,75/d \times d$ (J = 15 und 4, 1 H) und 2,57-2,64/m (teilw. verdeckt, 2 H) (zusammen 2 H-C(4), 2 H-C(5) und 2 H-C(16); 2,50/s (3 H, CH₃N); 2,46/s (3 H, CH₃N); 1,93/d×m (J=12, 1 H, $H_{ad}^{-}C(17)$; 1,88/d×d×d (J=12, 12 und 4, 1 H, $H_{ax}^{-}C(17)$). Einstrahlen bei 3,58 (H-C(1)) ergibt: $3,\overline{03}/s$ (H–C(2)). - ¹³C-NMR. (25,2 MHz, CDCl₃): 180,5/d (³J_H-C(10)/C(12)</sub>=7,5, C(12)); 159,8/s, 152,2/s, 150,8/s, 144,3/s, 129,2/s (2C) und 125,9/s (C(11), C(14), C(8), C(1), C(2), C(6), C(7)); $123,6/d \times d$ (¹J=162,9 und ³J_{H-C(1)/C(13)}=4,8, C(13)); 121,3/d br. (¹J=161,8, C(3')); 111,7/d br. $(^{1}J = 166, 6, C(10)); 67, 6/d (C(1)); 63, 2/d (C(2)); 60, 7/qa (CH_{3}O); 55, 4/qa (CH_{3}O); 54, 6/qa (CH_{3}O); 61, 6/q$ 46.8/s (C(9)); 54.6/t, 45.5/t und 42.9/t (C(4), C(5), C(16)); 43.3/qa (CH₃N); 42.9/qa (CH₃N); 29.0/t(C(17)). - MS. (70 eV): 396 (100, M^+), 381 (65, M^+ - CH₃), 368 (14), 365 (14), 353 (30), 337 (40), 206 (30), 205 (28), 192 (15), 190 (15), 174 (15), 143 (15).

C23H28N2O4 (396,49) Ber. C 69,67 H 7,12 N 7,06% Gef. C 69,44 H 7,13 N 6,88%

Oxydation von rac-10. a) Mit 2 Moläquiv. VOF₃. Mit 413 mg (1,0 mmol) rac-10 und 248 mg (2 mmol) VOF₃ bei -25° während 1,5 Std. Wenn das Rohprodukt in möglichst wenig CH₃OH gelöst und mit 2 Tropfen H₂O versetzt wurde, kristallisierten 163 mg (40%) analysenreines rac-5, 6, 7, 8-Tetramethoxy-1, 12-dimethyl-1, 2, 3, 10, 11, 12, 12a, 12b-octahydrodibenzo[de, gh][1, 10]phenanthrolin (rac-20) als weisse Prismen, Smp. 169–170°. Die Mutterlauge ergab nach präp. DC. (Alox, CHCl₃) in einer Hauptzone, Rf 0,5, 122 mg (32%) (1R, 2R, 9R/1S, 2S, 9S)-1', 2', 11-Trimethoxy-3, 15-dimethyl-benzo[fg]-3, 15-diazatetracyclo[7.5.3.0^{2,7}.0^{9,14}]heptadeca-10, 13-dien-12-on⁴) (23b) als leicht bräunliche Rhomben, Smp. 192–195°. Eine zweite Zone, Rf 0,8, ergab ein Gemisch, aus welchem durch Kristalli-

⁴⁾ Die Namen von 23 und 24 nach den IUPAC-Regeln für kondensierte polycyclische Ringsysteme lauten: 11a,7-([3]Azapropano)-1,2,10-trimethoxy-6,14-dimethyl-4,5,6,6a,7,11a-hexahydro-9H-6azabenzo[de]anthracen-9-on (23) und 10,11,14-Trimethoxy-1,2,4,5,7,8,15b,15c-octahydro-3H,6H,13H,15aH-3,6-diazabenzo[b]cyclopenta[mn]pyren-13-on (24).

sation weitere 22 mg (5%) *rac-20*, Smp. 169-170°, isoliert wurden. Die Mutterlauge enthielt noch 35 mg (8%) Gemisch von *rac-10* und *rac-20*, gemäss ¹H-NMR. im Verhältnis von *ca.* 9:1.

b) *Mit 7 Mol-Äquiv. VOF*₃. Mit 413 mg (1,0 mmol) *rac*-10 und 868 mg (7 mmol) VOF₃ bei -25° während 1,5 Std. Präp. DC. (Alox, CHCl₃) des Rohproduktes ergab 66 mg (16%) *rac*-20, Rf 0,8 und Smp. 169-170°, und 97 mg (24%) 23b, Rf 0,5 und Smp. 192-195°. *rac*-20: UV. (C₂H₅OH): 297 (6700) Sch., 265 (12650). - IR. (CHCl₃): 3000s, 2840s, 1590s, 1420s, 1375s, 1335s, 1135s, 1100s, 1085s, 1060s. - ¹H-NMR. (60 MHz, CDCl₃): 6,65/s (2 H, 2 HAr); 3,83/s (6 H, 2 CH₃O); 3,65/s (6 H, 2 CH₃O); 3,07/s (2 H, H-C(12a) und H-C(12b)); 3,1-3,5/m (8 H, 4 CH₂); 2,56/s (6 H, 2 CH₃N).

C₂₄H₃₀N₂O₄ (410,52) Ber. C 70,22 H 7,37 N 6,82% Gef. C 70,48 H 7,45 N 6,72%

23b: UV. (C₂H₅OH): 275 (6200) Sch., 237 (21600). - IR. (CHCl₁): 3010s, 2940s, 1670s, 1645s, 1620s, 1600m, 1465s, 1360m, 1310m, 1270m, 1085m, 1050m. - ¹H-NMR. (360 MHz, CDCl₃): 7,22/s (1 H, H-C(3')); 6,79/s (1 H, H-C(10)); 6,33/s (1 H, H-C(13)); 3,93/s (3 H, CH₃O); 3,86/s (3 H, und 6,5, 1 H), $2.85/d \times d \times d$ (J=13, 6,5 und 6,5, 1 H), $2.72/d \times d$ (degeneriert, J=6,5 und 6,5, 2 H) und 2,64-2,50/m (J = 13 und 2,5, 2 H) (zusammen 2 H-C(4), 2 H-C(5) und 2 H-C(16)); 2,49/s $(3 \text{ H}, \text{ CH}_3\text{N})$; 2,35/s (3 H, CH₃N); 2,28/d×d×d (J=13, 2,5 und 2,5, 1 H, H_{äa}-C(17)); 1,93/d×d×d $(J=13, 11 \text{ und } 6, 1 \text{ H}, \text{H}_{ax}-C(17))$. - ¹³C-NMR. (25,2 MHz, CDCl₃): 179,7/d (³J_{H-C(10)/C(12)}=7,2, -1.2) (³J_{H-C(10)/C(12)}=7,2) (³J_{H-C(10)/C(12)</sup>=7,2) (³J_{H-C(10)/C(12)}=7,2) (³J_{H-C(10)/C(12)}=7,2) (³J_{H-C(10)/C(12)</sup>=7,2) (³J_{H-C(10)/C(12)</sup>=7,2) (³J_{H-C(10)/C(12)</sup>=7,2) (³J_{H-C(10)/C(12)</sup>=7,2) (³J_{H-C(10)/C(12)</sup>=7,2) (³J_{H-C(10)/C(12)</sup>=7,2) (³J_{H-C(10)/C(12)}=7,2) (³J_{H-C(10)/C(12)</sup>=7,2) (³J_{H-C(10)/C(12)</sup>=7}}}}}}}}}</sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub> C(12)); 159,5/s, 151,0/s, 149,6/s, 144,5/s, 132,6/s, 129,8/s und 126,4/s (C(11), C(14), C(8), C(1'), C(2'), C(6), C(7)); $122.8/d \times d$ (¹J=163,7 und ³J_{H-C(1)/C(13)}=4.8, C(13)); 119.9/d br. (¹J=162,4, C(3')); 110,2/d br. $(^{1}J = 157,4, C(10)); 65,6/d (C(2)); 60,2/qa (CH_{3}O); 59,4/d (C(1)); 55,0/qa (CH_{3}O); 54,0/qa$ (CH₃O); 51,3/t, 45,2/t und 38,4/t (C(5), C(4) und C(16)); 43,1/s (C(9)); 40,5/qa (CH₃N); 38,4/qa (CH₃N); 24,5/t (C(17)). Einstrahlen bei 5 ppm ergibt: 122,8/d (${}^{1}J_{r}=6,1, C(13)$); 119,9/d (${}^{1}J_{r}=13,5,$ C(3'); 110,2/d (${}^{1}J_{r}=8.6$, C(10)). Einstrahlen bei 7,2 ppm (H-C(3')) ergibt 179,7/d (${}^{3}J_{r}=2.1$, C(12)); Einstrahlen bei 6,8 ppm (H-C(10)) ergibt 179,7/s (C(12)); Einstrahlen bei 6,3 (H-C(13)) ergibt 179,7/d (${}^{3}J_{r} = 5,6, C(12)$). - MS. (70 eV): 396 (100, M^{+}), 381 (80, $M^{+} - CH_{3}$), 368 (20); 365 (20, M^+ – OCH₃), 353 (35), 338 (35), 337 (45), 205 (25), 191 (10), 189 (30), 173 (23), 144 (20).

C₂₃H₂₈N₂O₄ (396,49) Ber. C 69,67 H 7,12 N 7,06% Gef. C 69,42 H 7,01 N 6,85%

Oxydation von meso-18. a) Mit 2 Mol-Äquiv. VOF3. Mit 411 mg (1,0 mmol) meso-18 und 248 mg (2,0 mmol) VOF₃ bei +25° während 23 Std. Präp. DC. (SiO₂, CH₃OH/CHCl₃ 4:1) des Rohproduktes lieferte 70 mg (18%) ¹H-NMR.-spektroskopisch reines (1S, 18R, 19S/1R, 18S, 19R)-1', 2', 16-Trimethoxy-benzo [jk]-4, 7-diazapentacyclo [9.6,2.0^{1,13}.0^{4,18}.0^{7,19}]nonadeca-13, 16-dien-15-on⁴) (24). Rf 0.3, als gelblichen Schaum und 176 mg (43%) zurückgewonnenes meso-18, Rf 0,4. Erneute präp. DC. (Alox, CHCl₃) von 24, Rf 0.5, und anschliessende Kristallisation aus Diisopropyläther/C₂H₅OH 15:1 ergaben 24 als leicht gelbliche Nadeln, Smp. 203-205°. - UV. (C₂H₅OH): 317 (7000) Sch., 288 (12900). -IR. (CHCl₃): 3010m, 2940m, 1660s, 1640s, 1610m, 1485m, 1465m, 1455m, 1180m, 1150m, 1130m, 1120m, -¹H-NMR. (400 MHz, CDCl₃): 6,70/s (1 H, H-C(3')); 6,55/s (1 H, H-C(14)); 6,00/s (1 H, H-C(17)); 3,87/s (3 H, CH₃O); 3,84/d (teilw. verdeckt, J = 4,5, 1 H, H–C(18)); 3,83/s (3 H, CH₃O); 3,74/s (3 H, CH₃O); 3,22/d (J=4,5, 1 H, H-C(19)); 3,36-3,09/m (2 H), 3,09-2,86/m (4 H), $2,76/d \times d \times d$ (J=12, 12 und 3, 1 H), 2,73-2,58/m (2 H) und 2,52-2,37 (1 H) (zusammen 2 H-C(9), 2 H-C(8), 2 H-C(6), 2 H-C(5) und 2 H-C(3); 2,16-1,98/m (2 H, 2 H-C(2)). - ¹H-NMR. (400 MHz, C₆D₆): 6,85/s (1 H, H-C(3'); 6,37/s (1 H, H-C(14)); 5,72/s (1 H, H-C(17)); 3,67/s (3 H, CH_3O); 3,65/d (J=4,5, 1 H, H-C(18); 3,38/s (3 H, CH₃O); 3,29/s (3 H, CH₃O); 2,95/d (J=4,5, 1H, H-C(19)); 3,08-2,88/m (2 H), 2,88-2,60/m (4 H), $2,52/d \times d \times d$ (J = 8, 6 und 2, 1 H); 2,38-2,25/m (2 H), 2,05-1,93/m (2 H) und $1,67/d \times d \times d$ (J = 12, 5 und 2, 1 H; zusammen 2 H-C(9), 2 H-C(8), 2 H-C(6), 2 H-C(5), 2 H-C(3), 2 H-C(2)).Einstrahlen bei 3,65 (H-C(18)) ergibt 2,95/s (H-C(19)). - ¹³C-NMR. (25,2 MHz, CDCl₃): 181,3/d ${}^{(3)}_{H-C(17)/C(15)} = 7,0, C(15); 155,1/d \, {}^{(3)}_{H-C(17)/C(13)} = 12, C(13)); 151,6/s, 149,3/s, 144,9/s, 128,6/s, 126,6/s und 126,2/s (C(16), C(12), C(1'), C(2'), C(10) und C(11)); 127,2/d \, {}^{(1)}_{J} = 166,0, (C(14));$ $121,6/d \times qa (^{1}J = 158, ^{3}J_{H-C(2)C(17)} = ^{3}J_{H-C(18)/C(17)} = 6, C(17)); 113,6/d \times d (^{1}J = 157, ^{3}J_{H-C(9)/C(37)} = 4, C(17)); 113,6/d \times d (^{1}J = 157, ^{3}J_{H-C(9)/C(37)} = 4, C(17)); 113,6/d \times d (^{1}J = 157, ^{3}J_{H-C(9)/C(37)} = 4, C(17)); 113,6/d \times d (^{1}J = 157, ^{3}J_{H-C(9)/C(37)} = 4, C(17)); 113,6/d \times d (^{1}J = 157, ^{3}J_{H-C(9)/C(37)} = 4, C(17)); 113,6/d \times d (^{1}J = 157, ^{3}J_{H-C(9)/C(37)} = 4, C(17)); 113,6/d \times d (^{1}J = 157, ^{3}J_{H-C(9)/C(37)} = 4, C(17)); 113,6/d \times d (^{1}J = 157, ^{3}J_{H-C(9)/C(37)} = 4, C(17)); 113,6/d \times d (^{1}J = 157, ^{3}J_{H-C(9)/C(37)} = 4, C(17)); 113,6/d \times d (^{1}J = 157, ^{3}J_{H-C(9)/C(37)} = 4, C(17)); 113,6/d \times d (^{1}J = 157, ^{3}J_{H-C(9)/C(37)} = 4, C(17)); 113,6/d \times d (^{1}J = 157, ^{3}J_{H-C(9)/C(37)} = 4, C(17)); 113,6/d \times d (^{1}J = 157, ^{3}J_{H-C(9)/C(37)} = 4, C(17)); 113,6/d \times d (^{1}J = 157, ^{3}J_{H-C(9)/C(37)} = 4, C(17)); 113,6/d \times d (^{1}J = 157, ^{3}J_{H-C(9)/C(37)} = 4, C(17)); 113,6/d \times d (^{1}J = 157, ^{3}J_{H-C(9)/C(37)} = 4, C(17)); 113,6/d \times d (^{1}J = 157, ^{3}J_{H-C(9)/C(37)} = 4, C(17)); 113,6/d \times d (^{1}J = 157, ^{3}J_{H-C(9)/C(37)} = 4, C(17)); 113,6/d \times d (^{1}J = 157, ^{3}J_{H-C(9)/C(37)} = 4, C(17)); 113,6/d \times d (^{1}J = 157, ^{3}J_{H-C(9)/C(37)} = 4, C(17)); 113,6/d \times d (^{1}J = 157, ^{3}J_{H-C(9)/C(37)} = 4, C(17)); 113,6/d \times d (^{1}J = 157, ^{3}J_{H-C(9)/C(37)} = 4, C(17)); 113,6/d \times d (^{1}J = 157, ^{3}J_{H-C(9)/C(37)} = 4, C(17)); 113,6/d \times d (^{1}J = 157, ^{3}J_{H-C(9)/C(37)} = 4, C(17)); 113,6/d \times d (^{1}J = 157, ^{3}J_{H-C(9)/C(37)} = 4, C(17)); 113,6/d \times d (^{1}J = 157, ^{3}J_{H-C(9)/C(37)} = 4, C(17)); 113,6/d \times d (^{1}J = 157, ^{3}J_{H-C(9)/C(37)} = 4, C(17)); 113,6/d \times d (^{1}J = 157, ^{3}J_{H-C(9)/C(37)} = 4, C(17)); 113,6/d \times d (^{1}J = 157, ^{3}J_{H-C(9)/C(37)} = 4, C(17)); 113,6/d \times d (^{1}J = 157, ^{3}J_{H-C(9)/C(37)} = 4, C(17)); 113,6/d \times d (^{1}J = 157, ^{3}J_{H-C(9)/C(37)} = 4, C(17)); 113,6/d \times d (^{1}J = 157, ^{3}J_{H-C(9)/C(37)} = 15, C(17)); 113,6/d \times d (^{1}J = 15, C(17)); 113,6/$ C(3'); 67,6/d (C(18)); 61,1/qa (CH₃O); 55,8/qa (CH₃O); 55,9/qa (CH₃O); 54,2/d (C(19)); 51,3/1, 49,9/t, 49,2/t, 43,3/t und 42,1/t (C(9), C(8), C(6), C(5) und C(3)); 49,3/s (C(1)); 21,2/t (C(2)). Einstrahlen bei 8,0 ppm ergibt: $\frac{127,2}{d} \left({}^{1}J_{r} = 11,5, C(14) \right)$; $\frac{121,6}{d} \left({}^{1}J_{r} = 15,8, C(17) \right)$; $\frac{113,6}{d} \left({}^{1}J_{r} = 10,8, C(1$ C(3')). Einstrahlen bei 6,00 ppm (H-C(17)) ergibt: 181,3/s (C(15)); 155,1/s (C(13)). - MS. (70 eV): $394 (90, M^+), 379 (100, M^+ - CH_3).$

C23H26N2O4 (394,26) Ber. C 70,03 H 6,64 N 7,40% Gef. C 69,30 H 6,77 N 6,48%

b) Mit 7 Mol-Äquiv. VOF₃. Mit 411 mg (1,0 mmol) meso-18 und 868 mg (7 mmol) VOF₃ bei $+25^{\circ}$ während 1,5 Std. Aus dem Rohprodukt wurden nach präp. DC. (SiO₂. CH₃OH/CHCl₃ 4:1) als einzig identifizierbare Verbindung 16 mg (4%) Reaktant zurückgewonnen, Rf 0,3.

Oxydation von rac-18 mit 2 Mol-Äquiv. VOF₃. Mit 411 mg (1,0 mmol) rac-18 und 248 mg (2 mmol) VOF₃ bei -25° während 1,5 Std. Durch Abtrennung einer in Diisopropyläther unlöslichen Verunreinigung und Umkristallisation des löslichen Materials aus C₂H₅OH wurden, nach Trocknen bei 0,01 Torr/50°, 295 mg (72%) rac-1, 12-Äthano-5, 6, 7, 8-tetramethoxy-1, 2, 3, 10, 11, 12, 12a, 12b-octa-hydrodibenzo [de,gh][1,10]phenanthrolin (rac-21) als weisse Schuppen erhalten, Smp. 95-107°, welches gemäss ¹H-NMR.- und Elementaranalyse noch 1 Mol-Äquiv. C₂H₅OH enthielt. - UV. (C₂H₅OH): 297 (5900) Sch., 271 (15600). - IR. (CHCl₃): 3010m, 2950m, 2930m, 1590m, 1470s, 1425s, 1290s, 1270s, 1140s, 1070s. - ¹H-NMR. (100 MHz, CDCl₃): 6,67/s (2 H, arom.); 3,84/s (6 H, 2 CH₃O); 3,65/s (6 H, 2 CH₃O); 3,4-2,2/m (12 H, 6 CH₂); 2,83/s (2 , H-C(12a) und H-C(12b)). - MS. (70 eV): 408 (90, M⁺), 407 (100), 393 (70, M⁺ - CH₃), 376 (40), 204 (20, M⁺/2), 144 (20).

 $C_{24}H_{28}N_2O_4 \cdot C_2H_5OH$ (408,48) Ber. C 68,70 H 7,53 N 6,16% Gef. C 68,69 H 7,41 N 6,24%

Herstellung von rac-1, 12-Dimethyl-1, 2, 3, 10, 11, 12, 12a, 12b-octahydrodibenzo [de, gh][1, 10]phenanthrolin-5, 6, 7, 8-tetrol-dibromid (rac- $25 \cdot 2$ HBr). Eine Lösung von 100 mg (0,24 mmol) rac-20 in 2 ml 48proz. wässeriger HBr-Lösung wurde 3 Std. unter Rückfluss erhitzt. Nach Abkühlen wurde das ausgefällte Produkt abfiltriert, mit wenig Wasser und Aceton gewaschen und bei 0,01 Torr getrocknet: 75 mg (60%) ¹H-NMR.-spektroskopisch reines rac- $25 \cdot 2$ HBr, Smp. 300° (allmähliche Verkohlung). – UV. (C₂H₅OH): 305 (6500) Sch., 280 (9650). – IR. (KBr): 3300m br., 2990s, 1615m, 1595m, 1435s, 1265s. – ¹H-NMR. (60 MHz, CF₃COOH/(CF₃CO)₂O): 7,56/s (2 H, arom.); 5,45/s (2 H, H-C(12a) und H-C(12b)); 4,3-3,7/m und 3,7-3,0/m (teilw. verdeckt; insgesamt 8 H, 4 CH₂); 3,11/s (6 H, 2 CH₃N).

 $\begin{array}{ccc} C_{20}H_{24}Br_2N_2O_4 & \text{Ber. C } 46,53 & \text{H } 4,68 & \text{Br } 30,96 & \text{N } 5,42\% \\ (516,24) & \text{Gef. },, 47,59 & ,, 4,62 & ,, 29,99 & ,, 5,04\% \end{array}$

Eine Probe dieses Hydrobromids wurde mit konz. NH₄OH-Lösung in die freie Base *rac-25*, Smp. 300°, überführt. – MS. (70 eV): 368 (29, M^+ + CH₂, unvollständig demethyliertes *rac-20*), 354 (65, M^+), 336 (100, M^+ – H₂O). 252 (54).

Herstellung von rac-1, 12-Åthano-1, 2, 3, 10, 11, 12, 12a, 12b-octahydrodibenzo [de, gh][1, 10]phenanthrolin-5, 6, 7, 8-tetrol-dihydrobromid (rac-26 · 2 HBr). Eine Lösung von 200 mg (0,48 mmol) rac-21 in 6 ml 48proz. Bromwasserstoffsäure wurde 27 Std. unter Rückfluss erhitzt. Aufarbeitung wie bei rac-25 · 2 HBr: 233 mg (93%) rac-26 · 2 HBr, Smp. > 300°. – UV. (C₂H₅OH): 305 (6200), 274 (13400). – IR. (KBr): 3350-3100s br., 2920s, 1610s, 1600s, 1465s, 1300, 1240s. – ¹H-NMR. (60 MHz, CF₃COOH/ (CF₃CO)₂O): 7,46/s (2 H, arom.); 5,49/s 2 H, H-C(12a) und H-C(12b)); 4,5-3,0/m (12 H, 6 CH₂).

 $\begin{array}{ccc} C_{20}H_{22}Br_2N_2O_4 & \text{Ber. C } 46,72 & \text{H } 4,31 & \text{Br } 31,08 & \text{N } 5,45\% \\ (514,22) & \text{Gef. },, 46,41 & ,, 4,43 & ,, 30,85 & ,, 5,16\% \end{array}$

Dieses Hydrobromid wurde wie oben in *rac*-**26**, Smp. 300°, überführt. – MS. (70 eV): 352 (80, M^+), 351 (100), 334 (40, M^+ – H₂O), 324 (20), 305 (30), 263 (20), 262 (70), 261 (40), 251 (45), 248 (38).

Oxydative Spaltung von meso- und rac-9. Je 30-50 mg meso- und rac-9 wurden in je ca. 0,5 ml CF₃COOH getrennt in NMR.-Röhrchen gelöst. In die gelb-orangen Lösungen wurde 1-2 Min. O₂ eingeleitet, wobei sich eine leichte Verfärbung nach rot-orange einstellte. In beiden Experimenten bildete sich dabei gemäss ¹H-NMR. als einziges Produkt 2-Äthoxycarbonyl-6, 7-dimethoxy-3, 4-dihydro-isochinolinium-trifluoracetat (27). – ¹H-NMR. (60 MHz, CF₃COOH): 9,53/s (1 H, H–C(1)); 7,60/s (1 H, H–C(8)); 7,27/s (1 H, H–C(5)); 4,73/qa (J=7, 2 H, CH₃CH₂O); 4,23/s (3 H, CH₃O); 4,08/s (3 H, CH₃O): 4,48/t (J=8, 2 H, 2 H–C(3)); 3,45/t (J=8, 2 H, 2 H–C(4)); 1,58/t (J=7, 3 H, (CH₃CH₂O).

Oxydative Spaltung von meso- und rac-16. In eine Lösung von 355 mg (0,75 mmol) meso-16 in 4 ml CF₃COOH wurde 15 Min. O₂ eingeleitet; danach enthielt gemäss ¹H-NMR. die Lösung als einziges Produkt das in CF₃COOH rot-braune 2-Äthoxycarbonyl-6, 7-dihydroxy-1, 2, 3, 4-tetrahydroisochinolinium-trifluoracetat (28). – Ausgehend von rac-16 bildete sich in einem analogen Versuch gemäss ¹H-NMR. ebenfalls 28. – ¹H-NMR. (60 MHz, CF₃COOH): 9,37/s (1 H, H–C(1)); 7,62/s (1 H, H–C(8)); 7,15/s (1 H, H-C(5)); 4,68/qa (J=7, 2 H, CH₃CH₂O); 4,40/t (J=8, 2 H, 2 H-C(3)); 3,32/t (J=8, 2 H-C(4)); 1,53/t (J=7, 3 H, CH₃CH₂O).

Zur Freisetzung der Base wurde obige Reaktionslösung nach Konzentration auf *ca.* die Hälfte des Volumens mit 50 ml ges. NaHCO₃-Lösung versetzt und 4mal mit CHCl₃ extrahiert. Trocknen der CHCl₃-Phase über Na₂SO₄ und Eindampfen lieferte 298 mg Rückstand als braun-rotes Öl. Nach Rühren in *ca.* 2 ml Essigester kristallisierten 150 mg (42%) 7-Hydroxy-6-oxo-2, 3, 4, 6-tetrahydroisochinolin-2-carbonsäure-äthylester (**30**) als gelbes Pulver, Smp. 150-152°. – UV. (CHCl₃): 403-405 (22200), 340 (8400) Sch., 257 (5550), 245 (6500). – IR. (CHCl₃): 3400w br., 1730m, 1590s, 1545m, 1465m, 1420m, 1375m, 1140m. – ¹H-NMR. (60 MHz, CDCl₃): 7,87/s (1 H, H–C(1)); 7,2-6,2/s br. (1 H, HO, austauschbar mit D₂O); 6,57/s (1 H, H–C(8)); 6,35/s br. (1 H, H–C(5)); 4,38/qa (J=7, 2 H, CH₃CH₂O); 3,93/t (J=7, 2 H, 2 H–C(3)); 2,90/t (J=7, 2 H, 2 H–C(4)); 1,40/t (J=7, 3 H, CH₃CH₂O). – MS. (12 eV): 235 (67, M^+), 207 (13, $M^+ - C_2H_4$), 176 (10), 163 (100, $M^+ - C_2H_4CO_2$), 162 (62), 135 (30), 134 (30).

 $C_{12}H_{13}NO_4 \cdot \frac{1}{2}H_2O(235,24)$ Ber. C 59,01 H 5,78 N 5,73% Gef. C 59,60 H 5,66 N 5,88%

Herstellung von 6,7-Dimethoxy-1,2,3,4-tetrahydroisochinolin-2-carbonsäure-äthylester (29). a) Durch Hydrierung von 27. Eine Lösung von 0,38 mmol 27 in 10 ml CF₃COOH wurde ca. 15 Min. in Gegenwart von 100 mg 10proz. Pd/C bei RT. hydriert, wobei sich die rot-orange Lösung entfärbte. Nach Einengen auf die Hälfte des Volumens wurde die Lösung auf ca. 25 ml ges. NaHCO₃-Lösung gegossen und 3mal mit CHCl₃ extrahiert. Trocknen der vereinigten CHCl₃-Phasen über Na₂SO₄, Filtrieren und Eindampfen ergaben 84 mg (83%) ¹H-NMR.-spektroskopisch reines 29 als gelbbräunliches Öl. Präp. DC. (SiO₂/CHCl₃) lieferte 58 mg (57%) 29 als farbloses Öl, Rf 0,65, dessen IR., ¹H-NMR. und MS. mit denen des unten hergestellten 29 übereinstimmen.

b) Durch Äthoxycarbonylierung von 6, 7-Dimethoxy-1, 2, 3, 4-tetrahydroisochinolin-hydrochlorid. Zu einer Suspension von 1,0 g (4,9 mmol) 6, 7-Dimethoxy-1, 2, 3, 4-tetrahydroisochinolin \cdot HCl [11] in 25 ml CHCl₃ wurden unter Eiskühlung 4,0 g (40 mmol) Triäthylamin und dann 1,0 g (9,3 mmol) Chlorameisensäure-äthylester getropft. Die Lösung wurde 30 Min. bei RT. gerührt. Nach 3maligem Auswaschen mit 10proz. HCl-Lösung, Trocknen der CHCl₃-Phasen über Na₂SO₄ und Eindampfen wurden 1,24 g (96%) **29** als weisses Pulver erhalten, Smp. 70-72°. Umkristallisation aus Petroläther lieferte 862 mg (66%) weisses Pulver mit unverändertem Smp. – IR. (CHCl₃): 3010w, 2940w, 2840w, 1685s, 1615w, 1515s, 1465s, 1445s, 1130m, 1105s. – ¹H-NMR. (100 MHz, CDCl₃): 6,62/s und 6,59/s (sich überlagernd, 2 H, arom.); 4,56/s (2 H, 2 H-C(1)); 4,19/qa (J=7, 2 H, CH₃CH₂O); 3,85/s (6 H, 2 CH₃O); 3,70/t (J=6, 2 H, 2 H-C(3)); 2,68/t (J=6, 2 H, 2 H-C(4)); 1,30/t (J=7, 3 H, CH₃CH₂O). – OCH₃).

C14H19NO2 (265,31) Ber. C 63,38 H 7,22 N 5,28% Gef. C 62,92 H 6,81 N 5,22%

Herstellung von 6, 7-Dihydroxy-1, 2, 3, 4-tetrahydroisochinolin-2-carbonsäure-äthylester (31). Eine (rotbraune) Lösung von 78 mg (0,33 mmol) **30** in ca. 10 ml 3proz. methanolischer HCl-Lösung wurde 5 Min. gerührt und vollständig eingedampft. Das feste Hydrochlorid von **30** wurde in ca. 7 ml CH₃OH gelöst und unter Rühren zu einer Lösung von 45 mg ca. 90proz. (ca. 0,6 mmol) Natriumcyanoborhydrid in ca. 5 ml CH₃OH getropft. Nach Abdampfen des CH₃OH wurde der Rückstand in H₂O aufgenommen und 4mal mit CHCl₃ extrahiert. Die vereinigten CHCl₃-Phasen wurden über Na₂SO₄ getrocknet und eingedampft. 67 mg (94%) ¹H-NMR.-spektroskopisch reines **31** als zum Teil kristallines, leicht braun gefärbtes Material, das nach Waschen in ca. 2 ml Essigester 37 mg (52%) **31** als beiges Pulver ergab, Smp. 166–168°. – IR. (KBr): 3450s, 3220m, 1670s, 1630m, 1615m, 1560s, 1390s, 1280s, 1245s, 1225s, 1180s. – ¹H-NMR. (60 MHz, CDCl₃/CD₃COCD₃ 1:1): 7,53/s br. (2 H, 2 HO); 6,67/s (2 H, arom.); 4,47/s (2 H, 2 H-C(1)); 4,17/qa (J=7, 2 H, CH₃CH₂O). – MS. (70 eV): 237 (11, M^+), 208 (100, $M^+ - C_2H_3$), 164 (42, $M^+ - CO_2C_2H_5$), 136 (42).

C₁₂H₁₅NO₄ (237,26) Ber. C 60,75 H 6,37 N 5,90% Gef. C 59,36 H 6,48 N 4,61%

Reduktiv methylierende Fragmentierung von rac- und meso-7 unter Clark-Eschweiler-Bedingungen. Eine Lösung von 400 mg (1,04 mmol) rac-7 in 560 mg (12,1 mmol) HCOOH und 205 mg (2,6 mmol) 38-40proz. Formalin wurde 10 Std. in einem geschlossenen Gefäss bei 85° gerührt und über Nacht bei RT. stehen gelassen. Nach Zugabe von ca. 1 ml konz. HCl-Lösung und Eindampfen der Lösung wurde der Rückstand in H₂O aufgenommen, mit 10proz. NaOH-Lösung basisch gestellt und 3mal mit Äther extrahiert. Die vereinigten Äther-Phasen wurden über Na₂SO₄ getrocknet und eingedampft. 420 mg (98%) gelbes Öl, welches gemäss ¹H-NMR. zu ca. 90% aus 2-Methyl-6, 7-dimethoxy-1, 2, 3, 4-tetrahydroisochinolin (32) und zu ca. 5% aus rac-8 bestand. Beim Verreiben mit Äther blieben 20 mg (5%) rac-8 als feine, leicht gelbe Nadeln, Smp. 202-206°, zurück. Von dem in der Mutterlauge verbliebenen Material wurden 100 mg mittels präp. DC. (SiO₂, CH₃OH) gereinigt. Die mit CH₃OH eluierte Hauptzone (Rf 0,4) enthielt 22 mg 32 als leicht gelblichen Festkörper, Smp. 50-57°, dessen IR. und ¹H-NMR. mit den im nachfolgenden Experiment für 32 beschriebenen identisch sind.

Aus einem gleich grossen Ansatz unter identischen Bedingungen, aber ausgehend von meso-7, wurden 415 mg (98%) gelbes öliges Rohprodukt erhalten, welches gemäss ¹H-NMR. zu ca. 90% aus 32 bestand.

Herstellung von 32 durch reduktive Methylierung von 6,7-Dimethoxy-1,2,3,4-tetrahydroisochinolin. Eine Lösung von 387 mg (2,0 mmol) 6,7-Dimethoxy-1,2,3,4-tetrahydroisochinolin [11] in 560 mg HCOOH und 230 mg 38-40proz. Formalin wurde in einem geschlossenen Gefäss 24 Std. auf einem Ölbad bei 90° erwärmt. Aufarbeiten wie oben ergab 347 mg (84%) rohes 32 als weisses Pulver, Smp. 57-59°. Umkristallisation aus Petroläther erhöhte den Smp. auf 75-78°. ([16]: 83°). – IR. (CHCl₃): 3010m, 2950m, 1520s, 1470s, 1378s, 1140s. – ¹H-NMR. (60 MHz, CDCl₃): 6,68/s (1 H, HAr); 6,60/s (1 H, HAr); 3,90/s (6 H, 2 CH₃O); 3,53/s (2 H, 2 H-C(1)); 3,0-2,5/m (4 H, 2 H-C(3) und 2 H-C(4)); 2,49/s (3 H, CH₃N).

LITERATURVERZEICHNIS

- J. G. Cannon, Adv. Neurol. 9, 177 (1975); B. Berny, T.J. Pechter, J. Schmutz, H.P. Weber & T.G. White, Experientia 31, 1327 (1975); P.C. Dandiya, H.L. Sharma, S.K. Patni & R.S. Gambhir, Experientia 31, 1441 (1975); C. Wei & S. Teitel, Heterocycles 8, 97 (1977).
- [2] I. Matsuo, T. Takahashi & S. Ohki, Yakugaku Zasshi 83, 518 (1963); Chem. Abstr. 59, 7483 (1963).
- [3] P. Cerutti & H. Schmid, Helv. 47, 203 (1964).
- [4] B. Franck & L.-F. Tietze, Angew. Chemie 79, 815 (1967).
- [5] T. Kametani, T. Sugahara, H. Yagi & K. Fukumoto, Tetrahedron 25, 3667 (1969).
- [6] T. Kametani & K. Fukumoto, Synthesis 1972, 657; T. Kametani, K. Fukumoto & F. Satoh, Bioorganic Chemistry 3, 430 (1974); T. Kametani & K. Fukumoto, Heterocycles 8, 465 (1977).
- [7] S. M. Kupchan, V. Kameswaran, J. T. Lynn, D. K. Williams & A.J. Liepa, J. Amer. chem. Soc. 97, 5622 (1975); M. S. Kupchan & Ch. K. Kim, J. Amer. chem. Soc. 97, 5623 (1975).
- [8] A. W. Sangster & K. L. Stuart, Chem. Rev. 65, 69 (1965).
- [9] K. L. Stuart, Chem. Rev. 71, 47 (1971).
- [10] T. Kametani, R. Charubala, M. Ihara, M. Koizumi, K. Takahashi & K. Fukumoto, J. chem. Soc. (C) 1971, 3315; S. M. Kupchan, A. J. Liepa, V. Kameswaran & R. F. Bryan, J. Amer. chem. Soc. 95, 6861 (1973); S. M. Kupchan & Ch. K. Kim, J. org. Chemistry 41, 3210 (1976).
- [11] J.S. Buck, J. Amer. chem. Soc. 56, 1769 (1934).
- [12] A.T. Nielsen, J. org. Chemistry 35, 2498 (1970); R.A. Henry, A.T. Nielsen & D.W. Moore, J. org. Chemistry 37, 3206 (1972).
- [13] S.F. Mason & D.R. Roberts, Chem. Commun. 1967, 476; R.A. Henry & C.A. Heller, J. Luminescence 4, 105 (1971).
- [14] M. Karpf & A.S. Dreiding, Helv. 68, 2409 (1975).
- [15] M. Karpf & A.S. Dreiding, Helv. 60, 3045 (1977).
- [16] J. Knabe, Arch. Pharm. 1959, 652.